论文标题

移动边缘网络上的半同步个性化联合学习

Semi-Synchronous Personalized Federated Learning over Mobile Edge Networks

论文作者

You, Chaoqun, Feng, Daquan, Guo, Kun, Yang, Howard H., Quek, Tony Q. S.

论文摘要

个性化联合学习(PFL)是一种新的联邦学习(FL)方法,可解决分布式用户设备(UES)生成的数据集的异质性问题。但是,大多数现有的PFL实现都依赖于同步训练来确保良好的收敛性能,这可能会导致严重的散乱问题,在这种情况下,训练时间大量延长了最慢的UE。为了解决这个问题,我们提出了一种半同步PFL算法,该算法被称为半同步个性化的FederatedAveraging(Perfeds $^2 $),而不是移动边缘网络。通过共同优化无线带宽分配和UE调度策略,它不仅减轻了Straggler问题,而且还提供了收敛的培训损失保证。我们根据每回合的参与者数量和回合的数量来得出Perfeds2收敛速率的上限。在此基础上,可以使用分析解决方案解决带宽分配问题,并且可以通过贪婪算法获得UE调度策略。实验结果验证了Perfeds2在节省训练时间以及确保训练损失的收敛性方面的有效性,与同步和异步PFL算法相比。

Personalized Federated Learning (PFL) is a new Federated Learning (FL) approach to address the heterogeneity issue of the datasets generated by distributed user equipments (UEs). However, most existing PFL implementations rely on synchronous training to ensure good convergence performances, which may lead to a serious straggler problem, where the training time is heavily prolonged by the slowest UE. To address this issue, we propose a semi-synchronous PFL algorithm, termed as Semi-Synchronous Personalized FederatedAveraging (PerFedS$^2$), over mobile edge networks. By jointly optimizing the wireless bandwidth allocation and UE scheduling policy, it not only mitigates the straggler problem but also provides convergent training loss guarantees. We derive an upper bound of the convergence rate of PerFedS2 in terms of the number of participants per global round and the number of rounds. On this basis, the bandwidth allocation problem can be solved using analytical solutions and the UE scheduling policy can be obtained by a greedy algorithm. Experimental results verify the effectiveness of PerFedS2 in saving training time as well as guaranteeing the convergence of training loss, in contrast to synchronous and asynchronous PFL algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源