论文标题

Morse-Novikov的数字,隧道编号和缝合歧管的数量

Morse-Novikov numbers, tunnel numbers, and handle numbers of sutured manifolds

论文作者

Baker, Kenneth L., Manjarrez-Gutiérrez, Fabiola

论文摘要

从几何论证中开发出,从其隧道号来界定链接的莫尔斯 - 诺维科夫数量,我们在其沿表面的分解量的手柄上的缝合歧管$(m,γ)$(m,γ)$(m,γ)$(M,γ)$的上限上获得了上限和下限。固定缝合结构$(m,γ)$,这使我们开发了手柄号函数$ h \ colon H_2(m,\ partial m; \ mathbb {r})\ to \ mathbb {n} $,它是界限的,在射线上是在射线上常数的,来自原点和本地最大。此外,对于整体级$ξ$,$ h(ξ)= 0 $,并且仅当沿某些表面的$(m,γ)$的分解为$ξ$是产品歧管。

Developed from geometric arguments for bounding the Morse-Novikov number of a link in terms of its tunnel number, we obtain upper and lower bounds on the handle number of a Heegaard splitting of a sutured manifold $(M,γ)$ in terms of the handle number of its decompositions along a surface representing a given 2nd homology class. Fixing the sutured structure $(M,γ)$, this leads us to develop the handle number function $h \colon H_2(M,\partial M;\mathbb{R}) \to \mathbb{N}$ which is bounded, constant on rays from the origin, and locally maximal. Furthermore, for an integral class $ξ$, $h(ξ)=0$ if and only if the decomposition of $(M,γ)$ along some surface representing $ξ$ is a product manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源