论文标题
一个新的数据集,用于评估和减轻农业领域人类检测的领域转移
A Novel Dataset for Evaluating and Alleviating Domain Shift for Human Detection in Agricultural Fields
论文作者
论文摘要
在本文中,我们评估了域转移对训练集合分布以外的数据进行训练的人类检测模型的影响,并提出了根据目标域的可用注释来减轻此类现象的方法。具体来说,我们使用Robotti平台介绍了在农业机器人应用程序中收集的现场数据集中的Opendr人类,从而可以定量测量此类应用程序中域移动的影响。此外,我们通过评估有关训练数据的三种不同的情况来检验手动注释的重要性:a)仅消极样本,即没有描绘的人,b)只有阳性样本,即仅包含人类的图像,以及c)阴性和阳性样本。我们的结果表明,即使仅使用负样本,即使对训练过程进行了额外的考虑,也可以达到良好的性能。我们还发现,阳性样品会提高性能,尤其是在更好的本地化方面。该数据集可在https://github.com/opendr-eu/datasets上公开下载。
In this paper we evaluate the impact of domain shift on human detection models trained on well known object detection datasets when deployed on data outside the distribution of the training set, as well as propose methods to alleviate such phenomena based on the available annotations from the target domain. Specifically, we introduce the OpenDR Humans in Field dataset, collected in the context of agricultural robotics applications, using the Robotti platform, allowing for quantitatively measuring the impact of domain shift in such applications. Furthermore, we examine the importance of manual annotation by evaluating three distinct scenarios concerning the training data: a) only negative samples, i.e., no depicted humans, b) only positive samples, i.e., only images which contain humans, and c) both negative and positive samples. Our results indicate that good performance can be achieved even when using only negative samples, if additional consideration is given to the training process. We also find that positive samples increase performance especially in terms of better localization. The dataset is publicly available for download at https://github.com/opendr-eu/datasets.