论文标题

解决果蝇中的胸反面问题

Solving the thoracic inverse problem in the fruit fly

论文作者

Pons, Arion, Perl, Illy, Ben-Dov, Omri, Maya, Roni, Beatus, Tsevi

论文摘要

在许多昆虫物种中,胸腔结构在启用飞行中起着至关重要的作用。在Dipteran间接飞行机制中,胸部充当飞行肌肉和机翼之间的传输联系,通常被认为是弹性调节器:提高飞行电动机效率彻底的线性或非线性共振。但是,由于在实验上很难凝视微小昆虫的动力传动系统,因此这种弹性调节的性质以及任何相关的谐振效应尚不清楚。在这里,我们提出了一种新的逆问题方法,以克服这一困难。在数据综合过程中,我们整合了果蝇D. Melanogaster的实验观察到的空气动力学和肌肉骨骼数据,并确定了苍蝇胸腔的几种令人惊讶的特性。我们发现水果蝇对飞行电动机共振有充满活力的需求:由于飞行电动机弹性而产生的能源可以提高到30%。但是,飞行肌肉本身的弹性足以确保飞行电动机共振。在果蝇中,胸部作为弹性调节剂的作用可能微不足道。我们还发现了果蝇翼运动运动学与肌肉动力学之间的基本联系:翼运动运动学显示了关键适应,包括在机翼高度角度,确保翅膀负荷需求与肌肉负载输出能力相匹配。这些新识别的特性共同导致了果蝇飞行电动机的新型概念模型:一种强烈的结构,由于肌肉弹性而引起的共鸣,并密切关注确保主要飞行肌肉有效地运行。我们的逆问题方法为这些微小的飞行电动机的复杂行为提供了新的启示,并为对其他昆虫进行进一步研究提供了途径。

In many insect species, the thoracic structure plays a crucial role in enabling flight. In the dipteran indirect flight mechanism, the thorax acts as a transmission link between the flight muscles and the wings, and it is often thought to act as an elastic modulator: improving flight motor efficiency thorough linear or nonlinear resonance. But as peering closely into the drivetrain of tiny insects is experimentally difficult, the nature of this elastic modulation, and any associated resonant effects, are unclear. Here, we present a new inverse-problem methodology to surmount this difficulty. In a data synthesis process, we integrate experimentally-observable aerodynamic and musculoskeletal data for the fruit fly D. melanogaster, and identify several surprising properties of the fly's thorax. We find that fruit flies have an energetic need for flight motor resonance: energy savings due to flight motor elasticity can be up be to 30%. However, the elasticity of the flight muscles themselves is sufficient - and sometimes more than sufficient - to ensure flight motor resonance. In fruit flies, the role of the thorax as an elastic modulator is likely to be insignificant. We discover also a fundamental link between the fruit fly wingbeat kinematics and musculature dynamics: wingbeat kinematics show key adaptions, including in wing elevation angle, that ensure that wingbeat load requirements match musculature load output capability. Together, these newly-identified properties lead to novel conceptual model of the fruit fly's flight motor: a strongly-nonlinear structure, resonant due to muscular elasticity, and intensely concerned with ensuring that the primary flight muscles are operating efficiently. Our inverse-problem methodology sheds new light on the complex behavior of these tiny flight motors, and provides avenues for further studies in a range of other insects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源