论文标题
用于自动化建筑物检查的基于无人机的视觉遥感
UAV-based Visual Remote Sensing for Automated Building Inspection
论文作者
论文摘要
与计算机视觉合并的基于无人机(UAV)的遥感系统(UAV)具有协助建筑物建设和灾难管理的潜力,例如地震期间的损害评估。可以通过检查来评估建筑物到地震的脆弱性,以考虑相关组件的预期损害进展以及组件对结构系统性能的贡献。这些检查中的大多数是手动进行的,导致高利用人力,时间和成本。本文提出了一种通过基于无人机的图像数据收集和用于后处理的软件库来自动化这些检查的方法,该方法有助于估算地震结构参数。这里考虑的关键参数是相邻建筑物,建筑计划形状,建筑计划区域,屋顶上的对象和屋顶布局之间的距离。通过使用距离测量传感器以及通过Google Earth获得的数据进行的现场测量,可以通过对现场测量进行验证所提出的方法在估计上述参数方面的准确性。可以从https://uvrsabi.github.io/访问其他详细信息和代码。
Unmanned Aerial Vehicle (UAV) based remote sensing system incorporated with computer vision has demonstrated potential for assisting building construction and in disaster management like damage assessment during earthquakes. The vulnerability of a building to earthquake can be assessed through inspection that takes into account the expected damage progression of the associated component and the component's contribution to structural system performance. Most of these inspections are done manually, leading to high utilization of manpower, time, and cost. This paper proposes a methodology to automate these inspections through UAV-based image data collection and a software library for post-processing that helps in estimating the seismic structural parameters. The key parameters considered here are the distances between adjacent buildings, building plan-shape, building plan area, objects on the rooftop and rooftop layout. The accuracy of the proposed methodology in estimating the above-mentioned parameters is verified through field measurements taken using a distance measuring sensor and also from the data obtained through Google Earth. Additional details and code can be accessed from https://uvrsabi.github.io/ .