论文标题

使用拓扑数据分析的特征检测和假设测试对极度嘈杂的纳米颗粒图像

Feature detection and hypothesis testing for extremely noisy nanoparticle images using topological data analysis

论文作者

Thomas, Andrew M., Crozier, Peter A., Xu, Yuchen, Matteson, David S.

论文摘要

我们提出了一种柔性算法,用于使用立方持续的同源性具有超低信噪比的图像中的特征检测和假设检验。我们的主要应用是鉴定原子柱和透射电子显微镜(TEM)中的其他特征。立方持续的同源性用于识别纳米颗粒视频框架中的局部最小值及其大小,这些视频中的框架框架与相关的原子特征相对应。我们将算法的性能与其他用于检测列的使用方法及其强度的方法进行了比较。此外,开发和采用了使用平滑图像(由位于图像真空区域中的像素生成的持续图)的实际有价值图摘要的蒙特卡洛拟合测试。使用这些摘要从生成的持久图中得出,可以为纳米颗粒视频产生单变量时间序列,从而提供了一种评估通量行为的手段。还建立了多个蒙特卡洛测试相同假设的错误发现率的保证。

We propose a flexible algorithm for feature detection and hypothesis testing in images with ultra low signal-to-noise ratio using cubical persistent homology. Our main application is in the identification of atomic columns and other features in transmission electron microscopy (TEM). Cubical persistent homology is used to identify local minima and their size in subregions in the frames of nanoparticle videos, which are hypothesized to correspond to relevant atomic features. We compare the performance of our algorithm to other employed methods for the detection of columns and their intensity. Additionally, Monte Carlo goodness-of-fit testing using real valued summaries of persistence diagrams derived from smoothed images (generated from pixels residing in the vacuum region of an image) is developed and employed to identify whether or not the proposed atomic features generated by our algorithm are due to noise. Using these summaries derived from the generated persistence diagrams, one can produce univariate time series for the nanoparticle videos, thus providing a means for assessing fluxional behavior. A guarantee on the false discovery rate for multiple Monte Carlo testing of identical hypotheses is also established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源