论文标题
企业集团多余的高斯流程建模,并应用重型离子碰撞
Conglomerate Multi-Fidelity Gaussian Process Modeling, with Application to Heavy-Ion Collisions
论文作者
论文摘要
在一个科学实验通常成本高昂的时代,多保真仿真为预测性科学计算提供了强大的工具。尽管在多保真建模上进行了显着的工作,但现有模型并未包含多保真模拟器的重要“集团”属性,在这种模拟器中,不同模拟器组件的精确度由不同的保真度参数控制。这种集团模拟器在复杂的核物理和天体物理学应用中广泛遇到。因此,我们提出了一种新的集团多保真高斯工艺(config)模型,该模型将这种集团结构嵌入到新颖的非平稳协方差函数中。我们表明,所提出的配置模型可以捕获有关集团模拟器数值收敛性的先验知识,从而允许对多保真系统进行成本效益的仿真。我们证明了在一组数字实验和两个应用中,配置在最先进模型上的预测性能提高,这是悬臂束偏转的第一个,第二种是模仿夸克 - 格鲁隆等离子体的演变的第二种,这是从理论上填充了大爆炸后很快就填充了宇宙的。
In an era where scientific experimentation is often costly, multi-fidelity emulation provides a powerful tool for predictive scientific computing. While there has been notable work on multi-fidelity modeling, existing models do not incorporate an important "conglomerate" property of multi-fidelity simulators, where the accuracies of different simulator components are controlled by different fidelity parameters. Such conglomerate simulators are widely encountered in complex nuclear physics and astrophysics applications. We thus propose a new CONglomerate multi-FIdelity Gaussian process (CONFIG) model, which embeds this conglomerate structure within a novel non-stationary covariance function. We show that the proposed CONFIG model can capture prior knowledge on the numerical convergence of conglomerate simulators, which allows for cost-efficient emulation of multi-fidelity systems. We demonstrate the improved predictive performance of CONFIG over state-of-the-art models in a suite of numerical experiments and two applications, the first for emulation of cantilever beam deflection and the second for emulating the evolution of the quark-gluon plasma, which was theorized to have filled the Universe shortly after the Big Bang.