论文标题
VREN:带有表达符号语言的排球拉力赛数据集
VREN: Volleyball Rally Dataset with Expression Notation Language
论文作者
论文摘要
这项研究旨在实现两个目标:第一个目标是策划一个庞大而信息丰富的数据集,其中包含有关球员的行动和位置的关键和简洁摘要,以及在专业和NCAA Div-I Indoreor排球游戏中排球的来源旅行模式。尽管几项先前的研究旨在为其他运动创建类似的数据集(例如羽毛球和足球),但尚未实现为室内排球创建这样的数据集。第二个目标是引入排球描述性语言,以充分描述游戏中的集会过程并将语言应用于我们的数据集。 Based on the curated dataset and our descriptive sports language, we introduce three tasks for automated volleyball action and tactic analysis using our dataset: (1) Volleyball Rally Prediction, aimed at predicting the outcome of a rally and helping players and coaches improve decision-making in practice, (2) Setting Type and Hitting Type Prediction, to help coaches and players prepare more effectively for the game, and (3) Volleyball Tactics and Attacking Zone Statistics,提供高级排球统计数据,并帮助教练更好地了解比赛和对手的策略。我们进行了案例研究,以说明实验结果如何为排球分析社区提供见解。此外,基于现实世界数据的实验评估为我们的数据集和语言的未来研究和应用建立了基准。这项研究弥合了室内排球场与计算机科学之间的差距。该数据集可在以下网址提供:https://github.com/haotianxia/vren。
This research is intended to accomplish two goals: The first goal is to curate a large and information rich dataset that contains crucial and succinct summaries on the players' actions and positions and the back-and-forth travel patterns of the volleyball in professional and NCAA Div-I indoor volleyball games. While several prior studies have aimed to create similar datasets for other sports (e.g. badminton and soccer), creating such a dataset for indoor volleyball is not yet realized. The second goal is to introduce a volleyball descriptive language to fully describe the rally processes in the games and apply the language to our dataset. Based on the curated dataset and our descriptive sports language, we introduce three tasks for automated volleyball action and tactic analysis using our dataset: (1) Volleyball Rally Prediction, aimed at predicting the outcome of a rally and helping players and coaches improve decision-making in practice, (2) Setting Type and Hitting Type Prediction, to help coaches and players prepare more effectively for the game, and (3) Volleyball Tactics and Attacking Zone Statistics, to provide advanced volleyball statistics and help coaches understand the game and opponent's tactics better. We conducted case studies to show how experimental results can provide insights to the volleyball analysis community. Furthermore, experimental evaluation based on real-world data establishes a baseline for future studies and applications of our dataset and language. This study bridges the gap between the indoor volleyball field and computer science. The dataset is available at: https://github.com/haotianxia/VREN.