论文标题

USEEK:无监督的SE(3) - 可用操纵的3D关键

USEEK: Unsupervised SE(3)-Equivariant 3D Keypoints for Generalizable Manipulation

论文作者

Xue, Zhengrong, Yuan, Zhecheng, Wang, Jiashun, Wang, Xueqian, Gao, Yang, Xu, Huazhe

论文摘要

机器人可以通过仅仅在单个对象实例上抓住姿势的证明,以任意构图操纵类别内的对象?在本文中,我们试图通过使用Useek(一种无监督的SE(3) - 等级关键点方法来解决这一有趣的挑战,该方法在类别中享受整个实例的一致性,以执行可推广的操作。 USEEK遵循教师学生的结构,以将无监督的关键点发现和SE(3) - 等级关键点检测解除。借助useek,机器人可以以有效且可解释的方式推断与任务相关的对象框架,从而使任何类别内对象都从任何姿势中操纵。通过广泛的实验,我们证明了Useek产生的关键具有丰富的语义,因此成功地将功能知识从演示对象转移到了新颖的对象。与其他进行操作的对象表示相比,面对较大的类别内形状差异,useek更具适应性,更健壮,演示率有限,并且在推理时间更有效。

Can a robot manipulate intra-category unseen objects in arbitrary poses with the help of a mere demonstration of grasping pose on a single object instance? In this paper, we try to address this intriguing challenge by using USEEK, an unsupervised SE(3)-equivariant keypoints method that enjoys alignment across instances in a category, to perform generalizable manipulation. USEEK follows a teacher-student structure to decouple the unsupervised keypoint discovery and SE(3)-equivariant keypoint detection. With USEEK in hand, the robot can infer the category-level task-relevant object frames in an efficient and explainable manner, enabling manipulation of any intra-category objects from and to any poses. Through extensive experiments, we demonstrate that the keypoints produced by USEEK possess rich semantics, thus successfully transferring the functional knowledge from the demonstration object to the novel ones. Compared with other object representations for manipulation, USEEK is more adaptive in the face of large intra-category shape variance, more robust with limited demonstrations, and more efficient at inference time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源