论文标题
医疗图像通过生成预估计的变压器字幕
Medical Image Captioning via Generative Pretrained Transformers
论文作者
论文摘要
自动临床标题生成问题被称为提议的模型,将额叶X射线扫描与放射学记录中的结构化患者信息结合在一起。我们将两种语言模型结合在一起,即表演台和GPT-3,以生成全面和描述性的放射学记录。这些模型的建议组合产生了文本摘要,其中包含有关发现的病理,其位置以及将每个病理定位在原始X射线扫描中的每个病理的2D热图。提出的模型在两个医学数据集(Open-I,Mimic-CXR和通用MS-Coco)上进行了测试。用自然语言评估指标测量的结果证明了它们对胸部X射线图像字幕的有效适用性。
The automatic clinical caption generation problem is referred to as proposed model combining the analysis of frontal chest X-Ray scans with structured patient information from the radiology records. We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records. The proposed combination of these models generates a textual summary with the essential information about pathologies found, their location, and the 2D heatmaps localizing each pathology on the original X-Ray scans. The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO. The results measured with the natural language assessment metrics prove their efficient applicability to the chest X-Ray image captioning.