论文标题

较高维度的吸引人的重力探针表面

Attractive gravity probe surfaces in higher dimensions

论文作者

Izumi, Keisuke, Tomikawa, Yoshimune, Shiromizu, Tetsuya, Yoshino, Hirotaka

论文摘要

在$ n $二维空间($ 3 \ le n <8 $)中,Riemannian Penrose不平等的概括已完成。我们引入了一个参数$α$($ - \ frac {1} {n-1} <α<\ infty $),指示重力场的强度,并用$α$定义了精致的有吸引力的重力探针表面(精制的AGP)。然后,我们显示了精制AGP的区域不等式,$ a \ leω_{n-1} \ left [(n+2(n-1)α)gm /(1+(n-1)α)\ right]^{\​​ frac {n-1} {n-1} {n-1} {n-2}}} $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ at $ ans $ ats $ empation Agps,$之间$(N-1)$ - 球体,$ G $是牛顿的重力常数,$ m $是Arnowitt-Deser-Misner Mass。获得的不平等不仅适用于强力区域中的表面,例如最小的表面(对应于$α\ to \ infty $),还适用于存在较弱的重力的那些(对应于lim lim lim lim $α\ to -\ frac {1}} {1} {n -1} $)。

A generalization of the Riemannian Penrose inequality in $n$-dimensional space ($3\le n<8$) is done. We introduce a parameter $α$ ($-\frac{1}{n-1}<α< \infty$) indicating the strength of the gravitational field, and define a refined attractive gravity probe surface (refined AGPS) with $α$. Then, we show the area inequality for a refined AGPS, $A \le ω_{n-1} \left[ (n+2(n-1)α)Gm /(1+(n-1)α) \right]^{\frac{n-1}{n-2}}$, where $A$ is the area of the refined AGPS, $ω_{n-1}$ is the area of the standard unit $(n-1)$-sphere, $G$ is Newton's gravitational constant and $m$ is the Arnowitt-Deser-Misner mass. The obtained inequality is applicable not only to surfaces in strong gravity regions such as a minimal surface (corresponding to the limit $α\to \infty$), but also to those in weak gravity existing near infinity (corresponding to the limit $α\to -\frac{1}{n-1}$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源