论文标题
使用图像深入学习的道路车辙检测
Road Rutting Detection using Deep Learning on Images
论文作者
论文摘要
道路车祸是一种严重的道路障碍,可能导致早期和昂贵的维护成本的道路过早失败。在过去的几年中,正在积极进行使用图像处理技术和深度学习的道路损害检测研究。但是,这些研究主要集中在检测裂缝,坑洼及其变体上。很少有关于探测道路的研究。本文提出了一个新颖的道路车辙数据集,其中包括949张图像,并提供对象级别和像素级注释。部署了对象检测模型和语义分割模型来检测所提出的数据集上的道路插道,并对模型预测进行了定量和定性分析,以评估模型性能并确定使用拟议方法检测道路插道时面临的挑战。对象检测模型Yolox-S达到61.6%的Map@iou = 0.5,语义分割模型PSPNET(RESNET-50)达到54.69,精度为72.67,从而为将来的类似工作提供了基准准确性。拟议的道路车辙数据集和我们的研究结果将有助于加速使用深度学习发现道路车辙的研究。
Road rutting is a severe road distress that can cause premature failure of road incurring early and costly maintenance costs. Research on road damage detection using image processing techniques and deep learning are being actively conducted in the past few years. However, these researches are mostly focused on detection of cracks, potholes, and their variants. Very few research has been done on the detection of road rutting. This paper proposes a novel road rutting dataset comprising of 949 images and provides both object level and pixel level annotations. Object detection models and semantic segmentation models were deployed to detect road rutting on the proposed dataset, and quantitative and qualitative analysis of model predictions were done to evaluate model performance and identify challenges faced in the detection of road rutting using the proposed method. Object detection model YOLOX-s achieves mAP@IoU=0.5 of 61.6% and semantic segmentation model PSPNet (Resnet-50) achieves IoU of 54.69 and accuracy of 72.67, thus providing a benchmark accuracy for similar work in future. The proposed road rutting dataset and the results of our research study will help accelerate the research on detection of road rutting using deep learning.