论文标题

全球淬火后三方信息中的普遍性

Universality in the tripartite information after global quenches

论文作者

Marić, Vanja, Fagotti, Maurizio

论文摘要

我们认为宏观上的大型3部分$(a,b,c)$连接的子系统$ a \ cup b \ cup b \ cup c $ in Infinite量子旋转链中并研究了rényi-$α$α$ tripartite信息$ i_3^^{(α)}(α)}(a,b,c)$。在干净的1D系统中,与当地的哈密顿量的平衡通常消失。共形关键系统的基础状态是一个值得注意的例外,其中$ i_3^{(α)}(a,b,c)$ $是交叉比率$ x = | a | a | a | a | a | |/[(| a |+| b |)的通用函数(| c |+| b | b | b |)]我们确定了不同类别的状态,这些状态在随时间演化下,通过翻译不变的汉密尔顿人在本地放松,以非零(rényi)三方信息,此外,该信息还表现出对$ x $的普遍依赖性。我们报告了$ i_3^{(α)} $的数值研究,该系统是双重释放费米子,提出现场理论描述,并在系统子类中以$α= 2 $的渐近行为进行渐近行为。这使我们可以在缩放限制$ x \ rightarrow 1^ - $中推断$ i_3^{(α)} $的值,我们称``剩余的三方信息''。如果非零,我们的分析指出了独立于rényi索引$α$的通用残差$ - \ log 2 $,因此也适用于真实的(von Neumann)三方信息。

We consider macroscopically large 3-partitions $(A,B,C)$ of connected subsystems $A\cup B \cup C$ in infinite quantum spin chains and study the Rényi-$α$ tripartite information $I_3^{(α)}(A,B,C)$. At equilibrium in clean 1D systems with local Hamiltonians it generally vanishes. A notable exception is the ground state of conformal critical systems, in which $I_3^{(α)}(A,B,C)$ is known to be a universal function of the cross ratio $x=|A||C|/[(|A|+|B|)(|C|+|B|)]$, where $|A|$ denotes $A$'s length. We identify different classes of states that, under time evolution with translationally invariant Hamiltonians, locally relax to states with a nonzero (Rényi) tripartite information, which furthermore exhibits a universal dependency on $x$. We report a numerical study of $I_3^{(α)}$ in systems that are dual to free fermions, propose a field-theory description, and work out their asymptotic behaviour for $α=2$ in general and for generic $α$ in a subclass of systems. This allows us to infer the value of $I_3^{(α)}$ in the scaling limit $x\rightarrow 1^-$, which we call ``residual tripartite information''. If nonzero, our analysis points to a universal residual value $-\log 2$ independently of the Rényi index $α$, and hence applies also to the genuine (von Neumann) tripartite information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源