论文标题
三角双仿射代数的派生等效性
Derived equivalences for trigonometric double affine Hecke algebras
论文作者
论文摘要
三角双仿射hecke代数$ \ mathbf {h} _c $对于不可约的根系,取决于一个复杂参数的家族$ c $给定两个参数的家族$ c $和$ c $和$ c'$,它们与整数不同,我们是由$ \ m i \ \ mathbf {c} _ c} c} c} c} c} c} c} c} c} c} $ \ mathbf {h} _ {c'} \ operatoTorname {-mod} $,并证明它诱导了派生类别的等效性。这是在理性Cherednik代数的派生等价方面的损失定理的三角学对应物。
The trigonometric double affine Hecke algebra $\mathbf{H}_c$ for an irreducible root system depends on a family of complex parameters $c$ Given two families of parameters $c$ and $c'$ which differ by integers, we construct the translation functor from $\mathbf{H}_{c}\operatorname{-Mod}$ to $\mathbf{H}_{c'}\operatorname{-Mod}$ and prove that it induces equivalence of derived categories. This is a trigonometric counterpart of a theorem of Losev on the derived equivalences for rational Cherednik algebras.