论文标题

用于访问控制的文本独立扬声器标识系统

Text Independent Speaker Identification System for Access Control

论文作者

Adetoyi, Oluyemi E.

论文摘要

甚至人类智能系统也无法提供100%的准确性来识别特定个人的演讲。 Machine Intelligence试图通过各种语音提取和语音建模技术来模仿说话者识别问题。本文提出了一种独立于文本的扬声器识别系统,该系统采用了MEL频率sepstral系数(MFCC)进行特征提取和K-Nearest邻居(KNN)进行分类。获得的最大交叉验证精度为60%。随后的研究将得到改善。

Even human intelligence system fails to offer 100% accuracy in identifying speeches from a specific individual. Machine intelligence is trying to mimic humans in speaker identification problems through various approaches to speech feature extraction and speech modeling techniques. This paper presents a text-independent speaker identification system that employs Mel Frequency Cepstral Coefficients (MFCC) for feature extraction and k-Nearest Neighbor (kNN) for classification. The maximum cross-validation accuracy obtained was 60%. This will be improved upon in subsequent research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源