论文标题
多机器人协调与任务优先关系关系
Multi-Robot Coordination and Cooperation with Task Precedence Relationships
论文作者
论文摘要
我们为多机器人任务计划和分配问题提出了一种新的公式,该计划结合了(a)任务之间的优先关系; (b)允许多个机器人提高效率的任务协调; (c)通过形成机器人联盟的任务合作,而单独的机器人不能执行。在我们的公式中,任务图指定了任务和任务之间的关系。我们在任务图的节点和边缘上定义了一组奖励功能。这些功能模拟了机器人联盟规模对任务绩效的影响,并结合了一个任务绩效对依赖任务的影响。最佳解决此问题是NP-HARD。但是,使用任务图公式使我们能够利用最小成本的网络流量方法有效地获得近似解决方案。此外,我们探索了一种混合整数编程方法,该方法为问题的小实例提供了最佳的解决方案,但在计算上很昂贵。我们还开发了一种贪婪的启发式算法作为基准。我们的建模和解决方案方法导致任务计划,即使在与许多代理商的大型任务中,也利用任务优先关系的关系以及机器人的协调和合作来实现高级任务绩效。
We propose a new formulation for the multi-robot task planning and allocation problem that incorporates (a) precedence relationships between tasks; (b) coordination for tasks allowing multiple robots to achieve increased efficiency; and (c) cooperation through the formation of robot coalitions for tasks that cannot be performed by individual robots alone. In our formulation, the tasks and the relationships between the tasks are specified by a task graph. We define a set of reward functions over the task graph's nodes and edges. These functions model the effect of robot coalition size on the task performance, and incorporate the influence of one task's performance on a dependent task. Solving this problem optimally is NP-hard. However, using the task graph formulation allows us to leverage min-cost network flow approaches to obtain approximate solutions efficiently. Additionally, we explore a mixed integer programming approach, which gives optimal solutions for small instances of the problem but is computationally expensive. We also develop a greedy heuristic algorithm as a baseline. Our modeling and solution approaches result in task plans that leverage task precedence relationships and robot coordination and cooperation to achieve high mission performance, even in large missions with many agents.