论文标题

横断面腹部CT切片中的位置差异,具有深度条件生成模型

Reducing Positional Variance in Cross-sectional Abdominal CT Slices with Deep Conditional Generative Models

论文作者

Yu, Xin, Yang, Qi, Tang, Yucheng, Gao, Riqiang, Bao, Shunxing, Cai, LeonY., Lee, Ho Hin, Huo, Yuankai, Moore, Ann Zenobia, Ferrucci, Luigi, Landman, Bennett A.

论文摘要

2D低剂量单板腹部计算机断层扫描(CT)切片可直接测量身体成分,这对于对衰老的健康关系进行定量表征至关重要。然而,由于不同年内获得的纵向切片之间的位置方差,使用2D腹部切片对人体成分变化的纵向分析具有挑战性。为了减少位置差异,我们将条件生成模型扩展到我们的C斜肌,该模型在腹部区域进行任意轴向切片作为条件,并通过估计潜在空间的结构变化来生成定义的椎骨水平切片。 2015年BTCV MICCAI挑战赛的1170名受试者的实验表明,我们的模型可以从现实主义和相似性方面产生高质量的图像。来自巴尔的摩纵向研究(BLSA)数据集的20名受试者的外部实验,其中包含纵向单腹部切片验证我们的方法可以在肌肉和内脏脂肪面积方面统一切片的位置方差。我们的方法提供了一个有希望的方向,将切片从不同的椎骨水平映射到目标切片,以减少单个切片纵向分析的位置差异。源代码可在以下网址获得:https://github.com/masilab/c-slicegen。

2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively characterizing health relationships on aging. However, longitudinal analysis of body composition changes using 2D abdominal slices is challenging due to positional variance between longitudinal slices acquired in different years. To reduce the positional variance, we extend the conditional generative models to our C-SliceGen that takes an arbitrary axial slice in the abdominal region as the condition and generates a defined vertebral level slice by estimating the structural changes in the latent space. Experiments on 1170 subjects from an in-house dataset and 50 subjects from BTCV MICCAI Challenge 2015 show that our model can generate high quality images in terms of realism and similarity. External experiments on 20 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset that contains longitudinal single abdominal slices validate that our method can harmonize the slice positional variance in terms of muscle and visceral fat area. Our approach provides a promising direction of mapping slices from different vertebral levels to a target slice to reduce positional variance for single slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源