论文标题
通过不变性受限的学习自动数据增强
Automatic Data Augmentation via Invariance-Constrained Learning
论文作者
论文摘要
通常利用基本数据结构(例如对称性或对转换的不可分割)来改善学习任务的解决方案。但是,将这些属性嵌入模型或学习算法可能是具有挑战性的,并且在计算上很重要。另一方面,数据增强在训练过程中通过将多个转换应用于输入数据来诱导这些对称性。尽管无处不在,但其有效性取决于选择哪些转换,何时进行的选择以及频率。实际上,有经验和理论上的证据表明,数据增强的滥用使用可能会引入偏见,使其大于其益处。这项工作可以通过在解决学习任务的同时自动调整数据增加来解决这些问题。为此,它将数据增强作为不变性受限的学习问题,并利用蒙特卡洛·马尔可夫链(MCMC)采样来解决它。结果是一种实用算法,不仅可以消除对增强分布的先验搜索,还可以动态控制数据增强。我们的实验说明了这种方法的性能,该方法实现了最新的实验,从而为CIFAR数据集提供了自动数据增强基准测试。此外,这种方法可用于收集有关学习任务基础的实际对称性的见解。
Underlying data structures, such as symmetries or invariances to transformations, are often exploited to improve the solution of learning tasks. However, embedding these properties in models or learning algorithms can be challenging and computationally intensive. Data augmentation, on the other hand, induces these symmetries during training by applying multiple transformations to the input data. Despite its ubiquity, its effectiveness depends on the choices of which transformations to apply, when to do so, and how often. In fact, there is both empirical and theoretical evidence that the indiscriminate use of data augmentation can introduce biases that outweigh its benefits. This work tackles these issues by automatically adapting the data augmentation while solving the learning task. To do so, it formulates data augmentation as an invariance-constrained learning problem and leverages Monte Carlo Markov Chain (MCMC) sampling to solve it. The result is a practical algorithm that not only does away with a priori searches for augmentation distributions, but also dynamically controls if and when data augmentation is applied. Our experiments illustrate the performance of this method, which achieves state-of-the-art results in automatic data augmentation benchmarks for CIFAR datasets. Furthermore, this approach can be used to gather insights on the actual symmetries underlying a learning task.