论文标题
概念网注入对话中的对话,对话响应产生的理解和推理
ConceptNet infused DialoGPT for Underlying Commonsense Understanding and Reasoning in Dialogue Response Generation
论文作者
论文摘要
预先训练的对话模型仍然无法捕获对话交互中隐藏的隐式常识性(CS)知识,即使它们已经通过庞大的数据集进行了预培训。为了用CS功能构建对话代理,我们首先将外部知识注入了预训练的对话模型,以通过有效的适配器调整来建立基本的常识(第4节)。其次,我们提出了``双向学习''方法来使CS知识和句子对之间的双向关系,以便模型可以在给定CS三胞胎的情况下生成句子,还可以生成给定句子的基础CS知识(第5节)。最后,我们利用这种集成的CS功能来改善开放域对话响应的生成,以便对话代理能够理解对话历史上隐藏的CS知识,除了推断其他相关知识以进一步指导响应生成(第6节)。实验结果表明,CS \ _Adapter Fusion有助于对话使能够生成一系列CS知识。并且对话+CS \ _adapter响应模型改编自公社培训可以生成基础CS三胞胎,以更适合对话上下文。
The pre-trained conversational models still fail to capture the implicit commonsense (CS) knowledge hidden in the dialogue interaction, even though they were pre-trained with an enormous dataset. In order to build a dialogue agent with CS capability, we firstly inject external knowledge into a pre-trained conversational model to establish basic commonsense through efficient Adapter tuning (Section 4). Secondly, we propose the ``two-way learning'' method to enable the bidirectional relationship between CS knowledge and sentence pairs so that the model can generate a sentence given the CS triplets, also generate the underlying CS knowledge given a sentence (Section 5). Finally, we leverage this integrated CS capability to improve open-domain dialogue response generation so that the dialogue agent is capable of understanding the CS knowledge hidden in dialogue history on top of inferring related other knowledge to further guide response generation (Section 6). The experiment results demonstrate that CS\_Adapter fusion helps DialoGPT to be able to generate series of CS knowledge. And the DialoGPT+CS\_Adapter response model adapted from CommonGen training can generate underlying CS triplets that fits better to dialogue context.