论文标题

有关手性更高自旋重力和凸几何形状的更多信息

More on Chiral Higher Spin Gravity and Convex Geometry

论文作者

Sharapov, Alexey, Skvortsov, Evgeny, Sukhanov, Arseny, Van Dongen, Richard

论文摘要

最近,一类独特的局部较高自旋重力,具有$ 4D $的传播无质量田地 - 手性较高的自旋重力 - 在运动方程级别以扁平和$(a)ds_4 $ spaceTime的协变。我们展开相应的同源扰动理论,以明确获得所有相互作用顶点。在适当更改变量后,顶点揭示了显着的简单性。与形式定理类似,$ a_ \ infty/l_ \ infty $多线性产品可以表示为在配置空间上的积分,在我们的情况下,这是凸多边形的空间。 $ a_ \ infty $ - 代数的手性理论是前加拉比Yau类型的。结果,运动方程式具有泊松西格玛模型形式。

Recently, a unique class of local Higher Spin Gravities with propagating massless fields in $4d$ - Chiral Higher Spin Gravity - was given a covariant formulation both in flat and $(A)dS_4$ spacetimes at the level of equations of motion. We unfold the corresponding homological perturbation theory as to explicitly obtain all interaction vertices. The vertices reveal a remarkable simplicity after an appropriate change of variables. Similarly to formality theorems the $A_\infty/L_\infty$ multi-linear products can be represented as integrals over a configuration space, which in our case is the space of convex polygons. The $A_\infty$-algebra underlying Chiral Theory is of pre-Calabi-Yau type. As a consequence, the equations of motion have the Poisson sigma-model form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源