论文标题

对于小波动的长波方程,孤立波解会持续存在吗?

Does solitary wave solution persist for the long wave equation with small perturbations?

论文作者

Zheng, Hang, Xia, Y-H.

论文摘要

在本文中,通过几何奇异扰动理论研究了带有小扰动的正规化长波方程的孤立波解的持久性。本文考虑了两种不同类型的扰动:一个是弱的向后扩散和耗散,另一种是marangoni效应。确实,在小扰动下孤独的波浪持续存在。此外,不同的扰动确实会影响正确的波速,从而确保了孤立波的持久性。最后,利用数值模拟来确认理论结果。

In this paper, persistence of solitary wave solutions of the regularized long wave equation with small perturbations are investigated by the geometric singular perturbation theory. Two different kinds of the perturbations are considered in this paper: one is the weak backward diffusion and dissipation, the other is the Marangoni effects. Indeed, the solitary wave persists under small perturbations. Furthermore, the different perturbations do affect the proper wave speed ensuring the persistence of the solitary waves. Finally, numerical simulations are utilized to confirm the theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源