论文标题

部分可观测时空混沌系统的无模型预测

A revised energy formalism for common-envelope evolution: repercussions for planetary engulfment and the formation of neutron star binaries

论文作者

Yarza, Ricardo, Everson, Rosa Wallace, Ramirez-Ruiz, Enrico

论文摘要

共同环境的演变是二进制系统进化的一个阶段,其中巨星吞噬了同伴。标准的能量形式主义是一个分析框架,旨在估计从同伴的收缩轨道转移到吞噬恒星的信封中的能量量。我们分析表明,这种能量转移比标准形式主义所预测的要大。随着伴侣的轨道收缩,其封闭的质量变小,而伴侣的结合要小于封闭的质量保持恒定的情况。因此,必须将更多的能量转移到信封中,以使轨道进一步收缩。我们得出了一种修订的能量形式主义,以说明这种影响,并在两种情况下讨论其后果:中子恒星二进制的形成以及其宿主恒星吞噬行星和棕色矮人。弹出恒星信封所需的伴侣质量较小,最高为$ 50 \%$,从而导致公共 - 内玻璃的演化结果差异。与瞬态光度和持续时间相关的恒星外包膜中的能量沉积高达$ \ \ \ \ \ \ \ \ \ \ \ hightize的持续时间约为约7美元。因此,在文献中定义的统一的公共 - 内玻璃效率值不一定是非物理的,并且至少部分源于对能量沉积的不完整描述。这里提出的修订的能量形式主义可以提高我们对出色合并和共同环境的观察和模拟的理解。

Common-envelope evolution is a stage in binary system evolution in which a giant star engulfs a companion. The standard energy formalism is an analytical framework to estimate the amount of energy transferred from the companion's shrinking orbit into the envelope of the star that engulfed it. We show analytically that this energy transfer is larger than predicted by the standard formalism. As the orbit of the companion shrinks, the mass it encloses becomes smaller, and the companion is less bound than if the enclosed mass had remained constant. Therefore, more energy must be transferred to the envelope for the orbit to shrink further. We derive a revised energy formalism that accounts for this effect, and discuss its consequences in two contexts: the formation of neutron star binaries, and the engulfment of planets and brown dwarfs by their host stars. The companion mass required to eject the stellar envelope is smaller by up to $50\%$, leading to differences in common-envelope evolution outcomes. The energy deposition in the outer envelope of the star, which is related to the transient luminosity and duration, is up to a factor of $\approx7$ higher. Common-envelope efficiency values above unity, as defined in the literature, are thus not necessarily unphysical, and result at least partly from an incomplete description of the energy deposition. The revised energy formalism presented here can improve our understanding of stellar merger and common-envelope observations and simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源