论文标题

部分可观测时空混沌系统的无模型预测

A high-order fast direct solver for surface PDEs

论文作者

Fortunato, Daniel

论文摘要

我们基于分层Poincaré-Steklov方法在表面上的可变椭圆形偏微分方程引入了一个快速直接求解器。该方法将表面的非结构化高阶四边形网格作为输入,并使用高阶光谱搭配方案在每个元素上离散表面差分运算符。元素解决方案操作员和Dirichlet to-Neumann地图与表面切线相切,并以成对的方式合并,以产生解决方案操作员的层次结构,这些层次可以用$ \ Mathcal {o}(n \ log n)$操作用于带有$ n $元素的网格。所得的快速直接求解器可用于加速高阶隐式时间步变方案,因为可以将预先计算的操作员重新用于表面上的快速椭圆求解。在标准笔记本电脑上,具有超过100万度的自由度的12阶表面网格的预计需要17秒,而随后的求解仅需0.25秒。我们将该方法应用于具有尖锐角和边缘的平滑表面和表面上的一系列问题,包括静态拉普拉斯 - 贝尔特拉米问题,切向矢量场的霍奇分解以及某些时间依赖的非线性反应 - 延伸系统。

We introduce a fast direct solver for variable-coefficient elliptic partial differential equations on surfaces based on the hierarchical Poincaré-Steklov method. The method takes as input an unstructured, high-order quadrilateral mesh of a surface and discretizes surface differential operators on each element using a high-order spectral collocation scheme. Elemental solution operators and Dirichlet-to-Neumann maps tangent to the surface are precomputed and merged in a pairwise fashion to yield a hierarchy of solution operators that may be applied in $\mathcal{O}(N \log N)$ operations for a mesh with $N$ elements. The resulting fast direct solver may be used to accelerate high-order implicit time-stepping schemes, as the precomputed operators can be reused for fast elliptic solves on surfaces. On a standard laptop, precomputation for a 12th-order surface mesh with over 1 million degrees of freedom takes 17 seconds, while subsequent solves take only 0.25 seconds. We apply the method to a range of problems on both smooth surfaces and surfaces with sharp corners and edges, including the static Laplace-Beltrami problem, the Hodge decomposition of a tangential vector field, and some time-dependent nonlinear reaction-diffusion systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源