论文标题

投影率和有效的全球生成箭袋束的决定性线条捆绑包

Projectivity and effective global generation of determinantal line bundles on quiver moduli

论文作者

Belmans, Pieter, Damiolini, Chiara, Franzen, Hans, Hoskins, Victoria, Makarova, Svetlana, Tajakka, Tuomas

论文摘要

我们给出了模量理论处理,可避免从几何不变理论中的方法中的模量空间的存在和特性。使用alper-Halpern-leistner--Heinloth的存在标准,我们表明,对于许多稳定函数,堆叠的半度表示可以承认一个适当的模量空间,并证明该模量空间在半光表示的模量上适当。我们构建了一个自然的决定性线条束,该捆绑包在模量空间上降至半载线束,并为全球发电提供了新的有效界限。对于无环颤动,我们证明了这条线束很丰富,因此给出了现代证明模量空间是投影的事实。

We give a moduli-theoretic treatment of the existence and properties of moduli spaces of semistable quiver representations, avoiding methods from geometric invariant theory. Using the existence criteria of Alper--Halpern-Leistner--Heinloth, we show that for many stability functions, the stack of semistable representations admits an adequate moduli space, and prove that this moduli space is proper over the moduli space of semisimple representations. We construct a natural determinantal line bundle that descends to a semiample line bundle on the moduli space and provide new effective bounds for global generation. For an acyclic quiver, we show that this line bundle is ample, thus giving a modern proof of the fact that the moduli space is projective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源