论文标题
CO $ _2 $陆地系外行星上的海洋双重性
CO$_2$ ocean bistability on terrestrial exoplanets
论文作者
论文摘要
岩石行星大气和内部之间二氧化碳的循环可以稳定全球气候,并使行星表面温度在地质时期冻结以上。但是,行星子系统之间的全球碳预算和不稳定的反馈周期的变化可能会使岩石系外行星的气候稳定稳定,以使太阳系中未知的政权稳定。在这里,我们执行清晰的大气辐射转移和表面风化模拟,以探测气候平衡的稳定性,以探测与行星系统相关的岩石,含有海洋的外部球星,该岩石型在室外居住区的外部地区。我们的模拟表明,绕着具有有效的碳固换的地球气候状态和替代性稳定的气候平衡,旋转G型和F型恒星(但不是M型恒星)的行星可能表现出双重性,其中Co $ _2 $在表面上凝结并形成clathrate水合或液体液体co $ $ _2 $的毛毯。在增加启动和无效的风化时,后一个状态在凉爽,表面CO $ _2 $构仪和热量,不调节的气候之间振荡。 CO $ _2 $ BISTABL -ABLABLE CLICATE可能会在行星历史早期出现,并保持数十亿年的稳定。与风化稳定的行星种群相比,二氧化碳调音的气候遵循$ p $ $ _2 $的相反趋势,这表明在这些独特的气候类别之间存在观察性歧视的可能性。
Cycling of carbon dioxide between the atmosphere and interior of rocky planets can stabilize global climate and enable planetary surface temperatures above freezing over geologic time. However, variations in global carbon budget and unstable feedback cycles between planetary sub-systems may destabilize the climate of rocky exoplanets toward regimes unknown in the Solar System. Here, we perform clear-sky atmospheric radiative transfer and surface weathering simulations to probe the stability of climate equilibria for rocky, ocean-bearing exoplanets at instellations relevant for planetary systems in the outer regions of the circumstellar habitable zone. Our simulations suggest that planets orbiting G- and F-type stars (but not M-type stars) may display bistability between an Earth-like climate state with efficient carbon sequestration and an alternative stable climate equilibrium where CO$_2$ condenses at the surface and forms a blanket of either clathrate hydrate or liquid CO$_2$. At increasing instellation and with ineffective weathering, the latter state oscillates between cool, surface CO$_2$-condensing and hot, non-condensing climates. CO$_2$ bistable climates may emerge early in planetary history and remain stable for billions of years. The carbon dioxide-condensing climates follow an opposite trend in $p$CO$_2$ versus instellation compared to the weathering-stabilized planet population, suggesting the possibility of observational discrimination between these distinct climate categories.