论文标题

WorldGen:大规模生成模拟器

WorldGen: A Large Scale Generative Simulator

论文作者

Singh, Chahat Deep, Kumari, Riya, Fermüller, Cornelia, Sanket, Nitin J., Aloimonos, Yiannis

论文摘要

在深度学习时代,数据是神经网络模型性能的关键决定因素。产生大型数据集遇到了各种困难,例如可扩展性,成本效率和光真相。为了避免昂贵且剧烈的数据集收集和注释,研究人员倾向于倾向于计算机生成的数据集。虽然,缺乏照相主义和有限的计算机辅助数据,但已限制了网络预测的准确性。 为此,我们介绍了WorldGen-一个开源框架,可以自主生成无数的结构化和非结构化的3D逼真的场景,例如城市视图,对象收集和对象碎片及其丰富的地面真相注释数据。 WorldGen是一种生成模型,可以使用户完全访问和控制功能,例如纹理,对象结构,运动,相机和镜头属性,从而通过减少网络中的数据偏置来更好地概括性。我们通过对深度光流进行评估来证明WorldGen的有效性。我们希望这样的工具可以通过减少手动劳动以及获取丰富和高质量数据的成本来打开与机器人技术和计算机视觉相关的无数领域的未来研究。

In the era of deep learning, data is the critical determining factor in the performance of neural network models. Generating large datasets suffers from various difficulties such as scalability, cost efficiency and photorealism. To avoid expensive and strenuous dataset collection and annotations, researchers have inclined towards computer-generated datasets. Although, a lack of photorealism and a limited amount of computer-aided data, has bounded the accuracy of network predictions. To this end, we present WorldGen -- an open source framework to autonomously generate countless structured and unstructured 3D photorealistic scenes such as city view, object collection, and object fragmentation along with its rich ground truth annotation data. WorldGen being a generative model gives the user full access and control to features such as texture, object structure, motion, camera and lens properties for better generalizability by diminishing the data bias in the network. We demonstrate the effectiveness of WorldGen by presenting an evaluation on deep optical flow. We hope such a tool can open doors for future research in a myriad of domains related to robotics and computer vision by reducing manual labor and the cost of acquiring rich and high-quality data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源