论文标题
Kähler指标和量化的Mabuchi空间中的实地测量学
Real-analytic geodesics in the Mabuchi space of Kähler metrics and quantization
论文作者
论文摘要
我们证明了量化的Bergman Geodesics与Mabuchi Geodesics的收敛性,以解决初始值问题,如果是真实的初始数据,并且在短时间内。这部分解决了Y. Rubinstein和最后一位作者的猜想。我们还反对对边界价值问题的存在,通常是在实现的规律性上。
We prove the convergence of quantized Bergman geodesics to the Mabuchi geodesics for the initial value problem, in the case of real-analytic initial data and in short time. This partially solves a conjecture of Y. Rubinstein and the last author. We also argue against the existence of a solution to the boundary value problem, generically in real-analytic regularity.