论文标题
使用离散模拟退火的投资组合优化
Portfolio optimization with discrete simulated annealing
论文作者
论文摘要
投资组合优化是财务中的一个重要过程,它包括找到最大化预期收益的最佳资产分配,同时最大程度地减少风险。当资产以离散单位分配时,这是一个组合优化问题,可以通过量子和量子启发的算法来解决。在这项工作中,我们提出了一种整数模拟的退火方法,可以在存在离散的凸面和非凸成本函数的情况下找到最佳投资组合。我们的算法可以使用数百个资产处理大型投资组合。我们引入了一个性能指标,即目标时间,基于与组合优化问题的连续放松获得的成本函数的下限。该指标使我们能够量化具有给定质量的解决方案所需的时间。我们进行数值实验,并在两种情况下对算法进行基准测试:(i)蒙特卡洛实例是随机启动的,(ii)算法以接近该问题的连续放松的初始实例进行温暖。我们发现,在使用凸成本函数的热量启动的情况下,目标的时间不会随着优化问题的大小而增长,因此,使用经典资源来解决凸投资组合优化问题的离散版本并不难解决。我们已经将方法应用于在存在非凸交易成本的情况下重新平衡的问题,我们发现我们的算法可以有效地最大程度地减少这些术语。
Portfolio optimization is an important process in finance that consists in finding the optimal asset allocation that maximizes expected returns while minimizing risk. When assets are allocated in discrete units, this is a combinatorial optimization problem that can be addressed by quantum and quantum-inspired algorithms. In this work we present an integer simulated annealing method to find optimal portfolios in the presence of discretized convex and non-convex cost functions. Our algorithm can deal with large size portfolios with hundreds of assets. We introduce a performance metric, the time to target, based on a lower bound to the cost function obtained with the continuous relaxation of the combinatorial optimization problem. This metric allows us to quantify the time required to achieve a solution with a given quality. We carry out numerical experiments and we benchmark the algorithm in two situations: (i) Monte Carlo instances are started at random, and (ii) the algorithm is warm-started with an initial instance close to the continuous relaxation of the problem. We find that in the case of warm-starting with convex cost functions, the time to target does not grow with the size of the optimization problem, so discretized versions of convex portfolio optimization problems are not hard to solve using classical resources. We have applied our method to the problem of re-balancing in the presence of non-convex transaction costs, and we have found that our algorithm can efficiently minimize those terms.