论文标题
抗腐蚀和耐磨性钛合金的计算设计骨科植入物
Computational Design of Corrosion-resistant and Wear-resistant Titanium Alloys for Orthopedic Implants
论文作者
论文摘要
由于其机械弹性和生物相容性,钛合金是骨科植入物的有前途的候选者。骨科植入物中的当前钛合金仍然患有低磨损和耐腐蚀性。在这里,我们提出了一种计算方法,用于优化钛合金的组成,以增强腐蚀和耐磨性,而不会损害其他方面,例如相位稳定性,生物相容性和强度。我们使用凝聚力的能量,氧化物形成能,表面功能和纯元素的弹性剪切模量作为代理描述符,以引导我们朝着具有增强的磨损和耐腐蚀性的合金转向合金。对于最佳选择的候选人,然后我们使用Thermo-Calc软件中实现的Calphad方法来计算相图,屈服强度,硬度,Pourbaix图和Pilling-Bedworth(PB)比率。这些计算用于评估所选合金的热力学稳定性,生物相容性,耐腐蚀性和耐磨性。此外,我们还提供了有关硅在改善合金腐蚀和耐磨性方面的作用的见解。
Titanium alloys are promising candidates for orthopedic implants due to their mechanical resilience and biocompatibility. Current titanium alloys in orthopedic implants still suffer from low wear and corrosion resistance. Here, we present a computational method for optimizing the composition of titanium alloys for enhanced corrosion and wear resistance without compromising on other aspects such as phase stability, biocompatibility, and strength. We use the cohesive energy, oxide formation energy, surface work function, and the elastic shear modulus of pure elements as proxy descriptors to guide us towards alloys with enhanced wear and corrosion resistance. For the best-selected candidates, we then use the CALPHAD approach, as implemented in the Thermo-Calc software, to calculate the phase diagram, yield strength, hardness, Pourbaix diagram, and the Pilling-Bedworth (PB) ratio. These calculations are used to assess the thermodynamic stability, biocompatibility, corrosion resistance, and wear resistance of the selected alloys. Additionally, we provide insights about the role of silicon on improving the corrosion and wear resistance of alloys.