论文标题

Riemannian指标的模量空间的最大元素

A maximal element of a moduli space of Riemannian metrics

论文作者

Taketomi, Yuichiro

论文摘要

对于给定的平滑歧管,我们将Riemannian指标的模量空间视为等轴测和缩放。可以通过等距组的大小在模量空间上定义预订。我们称之为Riemannian度量标准,该指标达到了最大元素最大值的最大度量。最大指标为各种度量演化方程(例如RICCI流动)提供了很好的自相似解。在本文中,我们在欧几里得空间上构建了许多最大指标的例子。

For a given smooth manifold, we consider the moduli space of Riemannian metrics up to isometry and scaling. One can define a preorder on the moduli space by the size of isometry groups. We call a Riemannian metric that attains a maximal element with respect to the preorder a maximal metric. Maximal metrics give nice examples of self-similar solutions for various metric evolution equations such as the Ricci flow. In this paper, we construct many examples of maximal metrics on Euclidean spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源