论文标题

关于有理递归序列

On Rational Recursive Sequences

论文作者

Clemente, Lorenzo, Donten-Bury, Maria, Mazowiecki, Filip, Pilipczuk, Michał

论文摘要

我们在理性数字上研究了理性递归序列(RATREC)的类别。使用深度1的相互递归方程来通过序列系统定义Ratrec序列,其中将下一个值计算为先前值的有理函数。替代类是简单的Ratrec序列,其中一个人使用单个递归方程,但是深度k:下一个值定义为k先前值的有理函数。 我们猜想类别RATREC和简单的Ratrec重合。本文的主要贡献证明了该猜想的变体,其中使用每个序列的形式变量象征性地对待初始条件,而序列本身由这些变量上的合理函数组成。虽然最初的猜想并非来自这种变体,但我们希望引入的代数技术最终可能有助于解决该问题。 类Ratrec严格概括了一类众所周知的多项式递归序列(PolyRec)。这些定义为Ratrec,但使用多项式函数而不是理性函数。可以观察到,如果我们的猜想是真实有效的,那么我们可以改善Zeroness的复杂性以及Polyrec序列的等效问题。目前,唯一已知的上限是Ackermanian,它取决于多项式自动机的结果。我们通过证明PSPACE的下限为Polyrec证明了这一观察结果。我们的下限结构还意味着Skolem问题是Polyrec类的Pspace-Hard。

We study the class of rational recursive sequences (ratrec) over the rational numbers. A ratrec sequence is defined via a system of sequences using mutually recursive equations of depth 1, where the next values are computed as rational functions of the previous values. An alternative class is that of simple ratrec sequences, where one uses a single recursive equation, however of depth k: the next value is defined as a rational function of k previous values. We conjecture that the classes ratrec and simple ratrec coincide. The main contribution of this paper is a proof of a variant of this conjecture where the initial conditions are treated symbolically, using a formal variable per sequence, while the sequences themselves consist of rational functions over those variables. While the initial conjecture does not follow from this variant, we hope that the introduced algebraic techniques may eventually be helpful in resolving the problem. The class ratrec strictly generalises a well-known class of polynomial recursive sequences (polyrec). These are defined like ratrec, but using polynomial functions instead of rational ones. One can observe that if our conjecture is true and effective, then we can improve the complexities of the zeroness and the equivalence problems for polyrec sequences. Currently, the only known upper bound is Ackermanian, which follows from results on polynomial automata. We complement this observation by proving a PSPACE lower bound for both problems for polyrec. Our lower bound construction also implies that the Skolem problem is PSPACE-hard for the polyrec class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源