论文标题
评估Exo-Acreths上N2O生物签名的合理范围:一种综合的生物地球化学,光化学和光谱建模方法
Evaluating the Plausible Range of N2O Biosignatures on Exo-Earths: An Integrated Biogeochemical, Photochemical, and Spectral Modeling Approach
论文作者
论文摘要
一氧化二氮(N2O) - 微生物氮代谢的产物 - 是一种引人注目的系外行星生物签名气体,在近红外和中型中具有独特的光谱特征,地球上只有较小的非生物源。先前对N2O作为生物签名的研究已经使用类似地球的N2O混合比或表面通量或从地球地质记录推断的情况检查了场景。然而,由于缺乏金属催化剂,或者如果硝化代谢的最后一步从未进化,则N2O的生物通量可能会大大更高。在这里,我们使用一个全局的生物地球化学模型,再加上光化学和光谱模型来系统地量化合理的N2O丰度的极限和绕线类似物的光谱可检测性的轨道类似物(FGKM)恒星。我们检查了与地球历史兼容的一系列N2O积累(每年1%-100%的大气水平)和N2O通量(每年0.01-100 teramole; Tmol = 10^12摩尔)。我们发现10 [100] TMOL YR $^{ - 1} $的N2O通量将导致地球类似物的最大n2o丰度〜5 [50] ppm,在后期K Dwarfs周围的地球为90 [1600] PPM ppm,对于地球上的300 [300] ppm for地球型trappiSt trappist-1e。我们模拟了与当前和未来的基于空间的望远镜相关的中间和最大N2O浓度的发射和传输光谱。我们计算用于使用JWST的trappist-1E的N2O光谱特征的可检测性。我们回顾了潜在的假阳性,包括通过恒星活性通过恒星活性产生化学硝化和非生物性产生,并确定关键频谱和上下文判别因子以确认或反驳观察到的N2O的生物源。
Nitrous oxide (N2O) -- a product of microbial nitrogen metabolism -- is a compelling exoplanet biosignature gas with distinctive spectral features in the near- and mid-infrared, and only minor abiotic sources on Earth. Previous investigations of N2O as a biosignature have examined scenarios using Earthlike N2O mixing ratios or surface fluxes, or those inferred from Earth's geologic record. However, biological fluxes of N2O could be substantially higher, due to a lack of metal catalysts or if the last step of the denitrification metabolism that yields N2 from N2O had never evolved. Here, we use a global biogeochemical model coupled with photochemical and spectral models to systematically quantify the limits of plausible N2O abundances and spectral detectability for Earth analogs orbiting main-sequence (FGKM) stars. We examine N2O buildup over a range of oxygen conditions (1%-100% present atmospheric level) and N2O fluxes (0.01-100 teramole per year; Tmol = 10^12 mole) that are compatible with Earth's history. We find that N2O fluxes of 10 [100] Tmol yr$^{-1}$ would lead to maximum N2O abundances of ~5 [50] ppm for Earth-Sun analogs, 90 [1600] ppm for Earths around late K dwarfs, and 30 [300] ppm for an Earthlike TRAPPIST-1e. We simulate emission and transmission spectra for intermediate and maximum N2O concentrations that are relevant to current and future space-based telescopes. We calculate the detectability of N2O spectral features for high-flux scenarios for TRAPPIST-1e with JWST. We review potential false positives, including chemodenitrification and abiotic production via stellar activity, and identify key spectral and contextual discriminants to confirm or refute the biogenicity of the observed N2O.