论文标题
通过圆形承诺进行热状态准备
Thermal State Preparation via Rounding Promises
论文作者
论文摘要
在量子计算机上制备吉布斯状态的有希望的途径是模拟物理热化过程。 Davies发电机描述了与热浴接触的开放量子系统的动力学。至关重要的是,它不需要模拟热水浴本身,而只需要我们希望热的系统。使用最先进的技术来对Lindblad方程进行量子模拟,我们设计了一种通过Davies Generator指定的热化来制备Gibbs状态的技术。 在这样做的过程中,我们遇到了严重的技术挑战:戴维斯发电机的实施要求能够明确估计系统的能量。也就是说,系统的每个能量必须确定性地映射到唯一的估计值。先前的工作表明,只有当系统满足非物理“圆形承诺”假设时,这是可能的。我们通过工程进行一个随机的圆形合奏来解决这个问题,同时解决了三个问题:首先,每个舍入承诺都可以通过Davies Generator来准备“应许”的热状态。其次,这些Davies发电机的混合时间与理想的Davies Generator相似。第三,这些承诺的热状态的平均值近似于理想的热状态。
A promising avenue for the preparation of Gibbs states on a quantum computer is to simulate the physical thermalization process. The Davies generator describes the dynamics of an open quantum system that is in contact with a heat bath. Crucially, it does not require simulation of the heat bath itself, only the system we hope to thermalize. Using the state-of-the-art techniques for quantum simulation of the Lindblad equation, we devise a technique for the preparation of Gibbs states via thermalization as specified by the Davies generator. In doing so, we encounter a severe technical challenge: implementation of the Davies generator demands the ability to estimate the energy of the system unambiguously. That is, each energy of the system must be deterministically mapped to a unique estimate. Previous work showed that this is only possible if the system satisfies an unphysical 'rounding promise' assumption. We solve this problem by engineering a random ensemble of rounding promises that simultaneously solves three problems: First, each rounding promise admits preparation of a 'promised' thermal state via a Davies generator. Second, these Davies generators have a similar mixing time as the ideal Davies generator. Third, the average of these promised thermal states approximates the ideal thermal state.