论文标题

部分可观测时空混沌系统的无模型预测

Multi-objective Deep Data Generation with Correlated Property Control

论文作者

Wang, Shiyu, Guo, Xiaojie, Lin, Xuanyang, Pan, Bo, Du, Yuanqi, Wang, Yinkai, Ye, Yanfang, Petersen, Ashley Ann, Leitgeb, Austin, AlKhalifa, Saleh, Minbiole, Kevin, Wuest, William, Shehu, Amarda, Zhao, Liang

论文摘要

由于能够为各种目的(例如图像合成和分子设计)建模并生成复杂的数据,因此开发深层生成模型一直是一个新兴领域。但是,深层生成模型的进步受到具有多种理想特性的对象的挑战的限制:1)现实世界属性之间存在复杂相关性的存在很常见,但很难识别; 2)控制各个属性会强制对其相关属性的部分控制,这很难建模; 3)同时控制多个属性的多种属性很难且探索不足。我们通过提出一个新颖的深层生成框架来应对这些挑战,该框架通过分离的潜在向量恢复语义和属性的相关性。相关性是通过可解释的掩盖池来处理的,并且属性通过生成的对象通过潜在矢量和属性之间的相互依赖性确切保留。我们的生成模型保留了感兴趣的属性,同时处理多目标优化框架下的相关性和属性冲突。该实验证明了我们模型在生成具有所需属性的数据时的出色性能。

Developing deep generative models has been an emerging field due to the ability to model and generate complex data for various purposes, such as image synthesis and molecular design. However, the advancement of deep generative models is limited by challenges to generate objects that possess multiple desired properties: 1) the existence of complex correlation among real-world properties is common but hard to identify; 2) controlling individual property enforces an implicit partially control of its correlated properties, which is difficult to model; 3) controlling multiple properties under various manners simultaneously is hard and under-explored. We address these challenges by proposing a novel deep generative framework that recovers semantics and the correlation of properties through disentangled latent vectors. The correlation is handled via an explainable mask pooling layer, and properties are precisely retained by generated objects via the mutual dependence between latent vectors and properties. Our generative model preserves properties of interest while handling correlation and conflicts of properties under a multi-objective optimization framework. The experiments demonstrate our model's superior performance in generating data with desired properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源