论文标题
部分可观测时空混沌系统的无模型预测
Link Partitioning on Simplicial Complexes Using Higher-Order Laplacians
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Link partitioning is a popular approach in network science used for discovering overlapping communities by identifying clusters of strongly connected links. Current link partitioning methods are specifically designed for networks modelled by graphs representing pairwise relationships. Therefore, these methods are incapable of utilizing higher-order information about group interactions in network data which is increasingly available. Simplicial complexes extend the dyadic model of graphs and can model polyadic relationships which are ubiquitous and crucial in many complex social and technological systems. In this paper, we introduce a link partitioning method that leverages higher-order (i.e. triadic and higher) information in simplicial complexes for better community detection. Our method utilizes a novel random walk on links of simplicial complexes defined by the higher-order Laplacian--a generalization of the graph Laplacian that incorporates polyadic relationships of the network. We transform this random walk into a graph-based random walk on a lifted line graph--a dual graph in which links are nodes while nodes and higher-order connections are links--and optimize for the standard notion of modularity. We show that our method is guaranteed to provide interpretable link partitioning results under mild assumptions. We also offer new theoretical results on the spectral properties of simplicial complexes by studying the spectrum of the link random walk. Experiment results on real-world community detection tasks show that our higher-order approach significantly outperforms existing graph-based link partitioning methods.