论文标题

隧道电流引起的本地激发发光,p掺杂的WSE $ _2 $单层

Tunneling-current-induced local excitonic luminescence in p-doped WSe$_2$ monolayers

论文作者

Román, Ricardo Javier Peña, Auad, Yves, Grasso, Lucas, Alvarez, Fernando, Barcelos, Ingrid David, Zagonel, Luiz Fernando

论文摘要

我们已经研究了使用扫描隧道显微镜(STM)在空气中运行的隧道式电流转移到金基板上的去角质钨(WSE $ _2 $)单层的激发性特性,以局部激发光发射。在获得的光谱中,发射能与应用的偏置电压无关,并且类似于光致发光(PL)结果,这表明在这两种情况下,光发射都是由于中性和带电的激子重组引起的。有趣的是,电子注入速率(即隧穿电流)可用于控制充电与中性激子发射的比率。每个电子中每个电子中获得的过渡金属二甲化合物(TMD)中获得的量子产率为$ 〜5x10^{ - 7} $光子。提出的激发机制是将载体直接注射到传导带中。单层WSE $ _2 $提出了由UHV下执行的STM图像发现的明亮和深色缺陷。 STS证实样品为P掺杂,可能是观察到的缺陷的净结果。界面水层的存在使单层将单层脱离,并允许从WSE $ _2 $单层中发出激素发射。由于无处不在的空气水分,水层的创建是样品转移过程的固有特征。因此,去除水层的真空热退火使TMD产生激发发光。隧穿电流可以局部置换水分子,导致由于金底物而导致的兴奋子发射和等离子发射。目前的发现扩展了对半导体TMD的STM诱导光发射(STM-LE)的使用和理解,以探测具有高空间分辨率的激子发射和动力学。

We have studied the excitonic properties of exfoliated tungsten diselenide (WSe$_2$) monolayers transferred to gold substrates using the tunneling current in a Scanning Tunneling Microscope (STM) operated in air to excite the light emission locally. In obtained spectra, emission energies are independent of the applied bias voltage and resemble photoluminescence (PL) results, indicating that, in both cases, the light emission is due to neutral and charged exciton recombination. Interestingly, the electron injection rate, that is, the tunneling current, can be used to control the ratio of charged to neutral exciton emission. The obtained quantum yield in the transition metal dichalcogenide (TMD) is $~5x10^{-7}$ photons per electron. The proposed excitation mechanism is the direct injection of carriers into the conduction band. The monolayer WSe$_2$ presents bright and dark defects spotted by STM images performed under UHV. STS confirms the sample as p-doped, possibly as a net result of the observed defects. The presence of an interfacial water layer decouples the monolayer from the gold support and allows excitonic emission from the WSe$_2$ monolayer. The creation of a water layer is an inherent feature of the sample transferring process due to the ubiquitous air moisture. Consequently, vacuum thermal annealing, which removes the water layer, quenches excitonic luminescence from the TMD. The tunneling current can locally displace water molecules leading to excitonic emission quenching and to plasmonic emission due to the gold substrate. The present findings extend the use and the understanding of STM induced light emission (STM-LE) on semiconducting TMDs to probe exciton emission and dynamics with high spatial resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源