论文标题
窗户的绿色功能MOM用于层次介质电磁散射问题的第二种表面积分方程式公式
Windowed Green Function MoM for Second-Kind Surface Integral Equation Formulations of Layered Media Electromagnetic Scattering Problems
论文作者
论文摘要
本文提出了一种第二种表面积分方程方法,用于通过在三个空间维度中局部扰动的分层介质来频域电磁散射问题的数值解。与标准方法不同,所提出的方法不涉及使用层绿色功能。相反,它利用自由空间绿色函数来利用间接的müller公式,这需要在整个无界渗透边界上进行集成。积分方程域有效地通过窗户的绿色功能方法有效地降低至小面积表面,该方法随着截短的表面的大小增加而表现出高阶收敛性。然后,使用RWG基础函数通过标准的钟表方法(MOM)的标准Galerkin方法来求解所得(第二种)窗口的积分方程。通过与MIE系列和Sommerfeld-integral精确解决方案以及与层绿色功能的MOM进行比较,可以验证该方法。具有挑战性的例子,包括与等离子太阳能电池和全端元额相关的现实结构,证明了所提出方法的适用性,效率和准确性。
This paper presents a second-kind surface integral equation method for the numerical solution of frequency-domain electromagnetic scattering problems by locally perturbed layered media in three spatial dimensions. Unlike standard approaches, the proposed methodology does not involve the use of layer Green functions. It instead leverages an indirect Müller formulation in terms of free-space Green functions that entails integration over the entire unbounded penetrable boundary. The integral equation domain is effectively reduced to a small-area surface by means of the windowed Green function method, which exhibits high-order convergence as the size of the truncated surface increases. The resulting (second-kind) windowed integral equation is then numerically solved by means of the standard Galerkin method of moments (MoM) using RWG basis functions. The methodology is validated by comparison with Mie-series and Sommerfeld-integral exact solutions as well as against a layer Green function-based MoM. Challenging examples including realistic structures relevant to the design of plasmonic solar cells and all-dielectric metasurfaces, demonstrate the applicability, efficiency, and accuracy of the proposed methodology.