论文标题
基于机器学习的方法来分类研究期刊
A Machine Learning Based Approach to Categorize Research Journals
论文作者
论文摘要
在这个现代技术时代,研究期刊的分类和排名在研究人员和科学家中越来越受欢迎。它对于在质量期刊中发表其研究发现起着重要作用。尽管在期刊分类和排名上存在许多研究工作,但是缺乏研究工作来使用合适的机器学习技术对期刊进行分类和预测。这项工作旨在对各种学术研究期刊进行分类和预测。这项工作提出了一个由五个步骤组成的混合预测模型。第一步是准备具有二十个功能的数据集。第二步是预处理数据集。第三步是将适当的聚类算法应用于分类。第四步是应用适当的功能选择技术,以获得有效的特征子集。第五步涉及一些合奏以及训练模型的非合奏方法。该模型在完整的功能上进行了训练,并通过应用三种功能选择技术获得选定的特征子集。在模型训练之后,预测结果将以精确,召回和准确性评估。结果可以帮助研究人员和从业人员预测期刊类别。
In this modern technological era, categorization and ranking of research journals is gaining popularity among researchers and scientists. It plays a significant role for publication of their research findings in a quality journal. Although, many research works exist on journal categorization and ranking, however, there is a lack of research works to categorize and predict the journals using suitable machine learning techniques. This work aims to categorize and predict various academic research journals. This work suggests a hybrid predictive model comprising of five steps. The first step is to prepare the dataset with twenty features. The second step is to pre-process the dataset. The third step is to apply an appropriate clustering algorithm for categorization. The fourth step is to apply appropriate feature selection techniques to get an effective subset of features. The fifth step involves some ensemble plus non ensemble methods to train the model. The model is trained on a full set of features, and a selected subset of features is obtained by applying three feature selection techniques. After model training, the prediction results are evaluated in terms of precision, recall, and accuracy. The results can help the researchers and the practitioners in predicting the journal category.