论文标题

无线频谱活动聚类的自学学习

Self-supervised Learning for Clustering of Wireless Spectrum Activity

论文作者

Milosheski, Ljupcho, Cerar, Gregor, Bertalanič, Blaž, Fortuna, Carolina, Mohorčič, Mihael

论文摘要

近年来,在处理无线学习技术的无线频谱数据方面已经完成了许多工作,这些技术在与域相关的问题中的认知无线网络中(例如异常检测,调制分类,技术分类和设备指纹)进行了很多工作。大多数解决方案都是基于以受控方式创建的标签数据,并采用监督学习方法进行处理。但是,在现实世界环境中测量的频谱数据是高度非确定性的,这使其标记为艰苦而昂贵的过程,需要域专业知识,因此是使用该领域中使用监督的学习方法的主要缺点之一。在本文中,我们研究了自我监督学习(SSL)在现实世界中未标记的数据中探索频谱活动的使用。特别是,我们比较了两个SSL模型的性能,一种基于参考深层架构的性能,另一个基于一个用于频谱活动识别和聚类的改编,以及基于K-Means聚类算法的基线模型。我们表明,SSL模型在提取功能和聚类性能的质量方面取得了卓越的性能。使用SSL模型,我们将特征向量的大小降低了两个数量级,同时在整个评估指标中将性能提高了2至2.5倍,并得到视觉评估的支持。此外,我们表明,参考SSL体系结构对域数据的适应可将模型复杂性降低一个数量级,同时保留甚至改善聚类性能。

In recent years, much work has been done on processing of wireless spectrum data involving machine learning techniques in domain-related problems for cognitive radio networks, such as anomaly detection, modulation classification, technology classification and device fingerprinting. Most of the solutions are based on labeled data, created in a controlled manner and processed with supervised learning approaches. However, spectrum data measured in real-world environment is highly nondeterministic, making its labeling a laborious and expensive process, requiring domain expertise, thus being one of the main drawbacks of using supervised learning approaches in this domain. In this paper, we investigate the use of self-supervised learning (SSL) for exploring spectrum activities in a real-world unlabeled data. In particular, we compare the performance of two SSL models, one based on a reference DeepCluster architecture and one adapted for spectrum activity identification and clustering, and a baseline model based on K-means clustering algorithm. We show that SSL models achieve superior performance regarding the quality of extracted features and clustering performance. With SSL models we achieve reduction of the feature vectors size by two orders of magnitude, while improving the performance by a factor of 2 to 2.5 across the evaluation metrics, supported by visual assessment. Additionally we show that adaptation of the reference SSL architecture to the domain data provides reduction of model complexity by one order of magnitude, while preserving or even improving the clustering performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源