论文标题
可扩展的光子集成电路,用于可编程的原子系统控制
Scalable photonic integrated circuits for programmable control of atomic systems
论文作者
论文摘要
激光技术的进步推动了原子,分子和光学(AMO)物理和新兴应用的发现,从具有冷原子或离子的量子计算机到具有固态色中心的量子网络。这一进展激发了新一代的“可编程光学控制”系统的发展,其特征是标准(C1)可见(VIS)和近红外(IR)波长操作,(C2)大信道计数超过1000秒的个体可寻址原子,(C3)高强度模型灭绝和(C4)重复性兼容且(C4)可重复性兼容级别和(c5)的cpit squors和(c5)。在这里,我们通过基于Vis-IR光子集成电路(PIC)技术引入原子控制体系结构来解决这些挑战。基于互补的金属氧化物 - 氧化导体(CMOS)制造过程,该原子控制PIC(APIC)技术符合系统要求(C1) - (C5)。作为概念证明,我们演示了基于氮化硅的16通道硅APIC,其NS响应时间(5.8 $ \ pm $ 0.4)和-30 dB灭绝率,波长为780 nm。这项工作证明了PIC技术对量子控制的适用性,这为基于光学可编程的原子系统开辟了通往可扩展量子信息处理的途径。
Advances in laser technology have driven discoveries in atomic, molecular, and optical (AMO) physics and emerging applications, from quantum computers with cold atoms or ions, to quantum networks with solid-state color centers. This progress is motivating the development of a new generation of "programmable optical control" systems, characterized by criteria (C1) visible (VIS) and near-infrared (IR) wavelength operation, (C2) large channel counts extensible beyond 1000s of individually addressable atoms, (C3) high intensity modulation extinction and (C4) repeatability compatible with low gate errors, and (C5) fast switching times. Here, we address these challenges by introducing an atom control architecture based on VIS-IR photonic integrated circuit (PIC) technology. Based on a complementary metal-oxide-semiconductor (CMOS) fabrication process, this Atom-control PIC (APIC) technology meets the system requirements (C1)-(C5). As a proof of concept, we demonstrate a 16-channel silicon nitride based APIC with (5.8$\pm$0.4) ns response times and -30 dB extinction ratio at a wavelength of 780 nm. This work demonstrates the suitability of PIC technology for quantum control, opening a path towards scalable quantum information processing based on optically-programmable atomic systems.