论文标题
最早的原始球星中的内部或外部岩浆海洋 - 氮和碳分馏的观点
Internal or external magma oceans in the earliest protoplanets -- perspectives from nitrogen and carbon fractionation
论文作者
论文摘要
当原球门熔化的程度接近岩浆海洋(MO)状态时,合金融化了从硅酸盐有效隔离到形成金属核。不同的原始球星的MO的性质,即内部或外部MO(IMO或emo),不仅决定了其核心和地幔储层中的氮(N)和碳(C)等寿命挥发物的丰富性,而且还决定了挥发性损失的时机和机制。然而,最早形成的原始星体具有IMOS还是EMOS是很少的理解。在这里,我们在不存在(IMO)或存在(Emo)的蒸气脱水大气的情况下对合金和硅酸盐熔体之间的平衡n和c进行了建模。通过比较岩浆铁陨石的母体核心中N和C浓度的合金熔体中预测的N和C浓度,通过比较合金熔体中预测的N和C的emos,在核心形成过程中的大量N和C库存受到限制。我们的结果表明,与EMOS相比,具有IMOS的原始球星满足父核的N和C含量,在核心形成过程中,母体中存在的大量n和c的含量大大降低。由于IMO和EMOS所需的大量n和c含量分别位于亚管束和软骨范围内,因此不能仅用N和C分级模型来区分这两个末端成员分化状态的流行率。 N和C的峰值变质温度的比较表明,原动性内部内部可能会以增加程度的热变质而失去其N和C库存的很大一部分。
When the extent of protoplanetary melting approached magma ocean (MO)-like conditions, alloy melts efficiently segregated from the silicates to form metallic cores. The nature of the MO of a differentiating protoplanet, i.e., internal or external MO (IMO or EMO), not only determines the abundances of life-essential volatiles like nitrogen (N) and carbon (C) in its core and mantle reservoirs but also the timing and mechanism of volatile loss. Whether the earliest formed protoplanets had IMOs or EMOs is, however, poorly understood. Here we model equilibrium N and C partitioning between alloy and silicate melts in the absence (IMO) or presence (EMO) of vapor degassed atmospheres. Bulk N and C inventories of the protoplanets during core formation are constrained for IMOs and EMOs by comparing the predicted N and C abundances in the alloy melts from both scenarios with N and C concentrations in the parent cores of magmatic iron meteorites. Our results show that in comparison to EMOs, protoplanets having IMOs satisfy N and C contents of the parent cores with substantially lower amounts of bulk N and C present in the parent body during core formation. As the required bulk N and C contents for IMOs and EMOs are in the sub-chondritic and chondritic range, respectively, N and C fractionation models alone cannot be used to distinguish the prevalence of these two end-member differentiation regimes. A comparison of N and C abundances in chondrites with their peak metamorphic temperatures suggests that protoplanetary interiors could lose a substantial portion of their N and C inventories with increasing degrees of thermal metamorphism.