论文标题
无监督的高光谱数据挖掘和通过信息熵和自模型曲线分辨率的生物成像
Unsupervised hyperspectral data mining and bioimaging by information entropy and self-modeling curve resolution
论文作者
论文摘要
无监督的估计含有纯净和混合光谱特征的高光谱微光谱数据集的维度,并提取其代表性的末端光谱是生物化学数据挖掘的挑战。我们报告了一种新的多功能算法,建立了半非核心限制的自我建模曲线和信息熵,以估计从高光谱微光谱法中可分离的生化物种的数量,并提取其代表性光谱。该算法通过卫星遥感,光谱不混合和聚类的既定方法进行了基准测试。为了证明已发达算法的广泛适用性,我们使用自发的拉曼,连贯的抗stokes拉曼散射和傅立叶变换IR收集了高光谱数据集,这是七种参考化合物,一种油内液体乳液,一种在多乳酸酸酯和多乳酸酸盐酸中的细胞外基质中的毛孔涂层,与牛软骨细胞。我们通过将高光谱分子信息与样品微观结构巩固为从胃物理学到再生医学的领域,通过将高光谱分子信息与样品微观结构合并,以显示开发算法的潜力。
Unsupervised estimation of the dimensionality of hyperspectral microspectroscopy datasets containing pure and mixed spectral features, and extraction of their representative endmember spectra, remains a challenge in biochemical data mining. We report a new versatile algorithm building on semi-nonnegativity constrained self-modeling curve resolution and information entropy, to estimate the quantity of separable biochemical species from hyperspectral microspectroscopy, and extraction of their representative spectra. The algorithm is benchmarked with established methods from satellite remote sensing, spectral unmixing, and clustering. To demonstrate the widespread applicability of the developed algorithm, we collected hyperspectral datasets using spontaneous Raman, Coherent Anti-stokes Raman Scattering and Fourier Transform IR, of seven reference compounds, an oil-in-water emulsion, and tissue-engineered extracellular matrices on poly-L-lactic acid and porcine jejunum-derived small intestine submucosa scaffolds seeded with bovine chondrocytes. We show the potential of the developed algorithm by consolidating hyperspectral molecular information with sample microstructure, pertinent to fields ranging from gastrophysics to regenerative medicine.