论文标题

XDBTagger:使用关键字映射和架构图的可解释数据库的自然语言接口

xDBTagger: Explainable Natural Language Interface to Databases Using Keyword Mappings and Schema Graph

论文作者

Usta, Arif, Karakayali, Akifhan, Ulusoy, Özgür

论文摘要

将自然语言查询(NLQ)转换为界面中的结构化查询语言(SQL)为关系数据库是一项具有挑战性的任务,该任务已被数据库和自然语言处理社区的研究人员广泛研究。已经提出了许多作品,以作为基于传统管道或基于端到的深度学习解决方案来攻击数据库(NLIDB)问题的自然语言界面问题。然而,无论采用哪种方法,这种解决方案都表现出黑盒性质,这使得这些系统针对的潜在用户很难理解生成翻译后的SQL的决策。为此,我们提出了XDBtagger,这是一种可解释的混合翻译管道,该管道在文本和视觉上都向用户解释了沿途做出的决策。我们还在三个现实世界中的关系数据库中定量评估XDBtagger。评估结果表明,除了完全容易解释外,XDBtagger在准确性方面还有效,并且与其他基于10000倍的基于最新的管道系统相比,更有效地转换查询。

Translating natural language queries (NLQ) into structured query language (SQL) in interfaces to relational databases is a challenging task that has been widely studied by researchers from both the database and natural language processing communities. Numerous works have been proposed to attack the natural language interfaces to databases (NLIDB) problem either as a conventional pipeline-based or an end-to-end deep-learning-based solution. Nevertheless, regardless of the approach preferred, such solutions exhibit black-box nature, which makes it difficult for potential users targeted by these systems to comprehend the decisions made to produce the translated SQL. To this end, we propose xDBTagger, an explainable hybrid translation pipeline that explains the decisions made along the way to the user both textually and visually. We also evaluate xDBTagger quantitatively in three real-world relational databases. The evaluation results indicate that in addition to being fully interpretable, xDBTagger is effective in terms of accuracy and translates the queries more efficiently compared to other state-of-the-art pipeline-based systems up to 10000 times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源