论文标题
通过模型编辑改善数据有效的化石分割
Improving Data-Efficient Fossil Segmentation via Model Editing
论文作者
论文摘要
大多数计算机视觉研究都集中在包含数千个常见对象图像的数据集上。但是,许多高影响的数据集,例如医学和地球科学的数据集,都包含需要域特科知识才能识别并耗时的细颗粒对象,以收集和注释。结果,这些数据集包含很少的标记图像,而当前的机器视觉模型无法对其进行大量训练。最初引入的是为了纠正大型模型,已经证明了机器学习中的模型编辑技术可仅使用少量数据和其他培训来提高模型性能。使用蒙版R-CNN在岩石样品图像中分段古代化石,我们提出了一个两部分的范式,以改善化石分割,几乎没有标记的图像:我们首先使用图像扰动来识别模型弱点,然后使用模型编辑来减轻这些弱点。 具体而言,我们应用了域信息扰动,以揭示蒙版R-CNN无法区分不同类别的化石及其在分割具有不同质地的化石时的不一致性。为了解决这些缺点,我们扩展了一种现有的模型编辑方法,用于纠正图像分类中的系统错误,以分割图像分割,而无需其他标记的数据,并显示了其在减少不同化石之间混淆的有效性。我们还强调了在我们的情况下进行模型编辑的最佳设置:使用一个图像中的所有相关像素进行单个编辑(使用多个图像,多个编辑或更少的像素)。尽管我们专注于化石分割,但我们的方法可能在数据受到限制的其他类似细粒细分问题中很有用。
Most computer vision research focuses on datasets containing thousands of images of commonplace objects. However, many high-impact datasets, such as those in medicine and the geosciences, contain fine-grain objects that require domain-expert knowledge to recognize and are time-consuming to collect and annotate. As a result, these datasets contain few labeled images, and current machine vision models cannot train intensively on them. Originally introduced to correct large-language models, model-editing techniques in machine learning have been shown to improve model performance using only small amounts of data and additional training. Using a Mask R-CNN to segment ancient reef fossils in rock sample images, we present a two-part paradigm to improve fossil segmentation with few labeled images: we first identify model weaknesses using image perturbations and then mitigate those weaknesses using model editing. Specifically, we apply domain-informed image perturbations to expose the Mask R-CNN's inability to distinguish between different classes of fossils and its inconsistency in segmenting fossils with different textures. To address these shortcomings, we extend an existing model-editing method for correcting systematic mistakes in image classification to image segmentation with no additional labeled data needed and show its effectiveness in decreasing confusion between different kinds of fossils. We also highlight the best settings for model editing in our situation: making a single edit using all relevant pixels in one image (vs. using multiple images, multiple edits, or fewer pixels). Though we focus on fossil segmentation, our approach may be useful in other similar fine-grain segmentation problems where data is limited.