论文标题
为高光谱异常变化检测草图的多视图子空间学习
Sketched Multi-view Subspace Learning for Hyperspectral Anomalous Change Detection
论文作者
论文摘要
近年来,多视图子空间学习一直在引起人们的关注。它旨在通过学习统一表示形式来捕获从多个来源收集的数据的内部关系。通过这种方式,共享和保留来自多个视图的全面信息用于概括过程。作为时间系列高光谱图像(HSI)处理的特殊分支,异常的更改检测任务着重于检测不同时间图像之间非常小的变化。但是,当数据集的数量很大或类相对全面时,现有方法可能无法在场景之间找到这些更改,最终得到可怕的检测结果。在本文中,受到草图表示和多视图子空间学习的启发,提出了用于HSI异常变化检测的草图多视图子空间学习(SMSL)模型。提出的模型保留了图像对中的主要信息,并使用草图表示矩阵改善了计算复杂性。此外,场景之间的差异是通过使用自代矩阵的特定正规化器来提取的。为了评估拟议的SMSL模型的检测有效性,实验是在基准高光谱遥感数据集和自然的高光谱数据集中进行的,并与其他最先进的方法进行了比较。
In recent years, multi-view subspace learning has been garnering increasing attention. It aims to capture the inner relationships of the data that are collected from multiple sources by learning a unified representation. In this way, comprehensive information from multiple views is shared and preserved for the generalization processes. As a special branch of temporal series hyperspectral image (HSI) processing, the anomalous change detection task focuses on detecting very small changes among different temporal images. However, when the volume of datasets is very large or the classes are relatively comprehensive, existing methods may fail to find those changes between the scenes, and end up with terrible detection results. In this paper, inspired by the sketched representation and multi-view subspace learning, a sketched multi-view subspace learning (SMSL) model is proposed for HSI anomalous change detection. The proposed model preserves major information from the image pairs and improves computational complexity by using a sketched representation matrix. Furthermore, the differences between scenes are extracted by utilizing the specific regularizer of the self-representation matrices. To evaluate the detection effectiveness of the proposed SMSL model, experiments are conducted on a benchmark hyperspectral remote sensing dataset and a natural hyperspectral dataset, and compared with other state-of-the art approaches.