论文标题
谨慎使用单个狄拉克锥(违反地方及其对意外有限温度过渡的后果)谨慎行事。
Caution on Gross-Neveu criticality with a single Dirac cone: Violation of locality and its consequence of unexpected finite-temperature transition
论文作者
论文摘要
最近,对单个狄拉克锥的(2+1)d gross-neveu的临界性进行了许多SLAC费用研究[1,2]。尽管SLAC Fermion结构确实引起了所有晶格动量的线性能量 - 在非相互作用的极限下的线性能量摩托车关系,但远距离跳跃及其随之而来的违反位置违反了总量子量子关键点(GN-QCP) - 先验的先验相互作用需要短距离相互作用 - 尚未验证。在这里,我们通过大规模的量子蒙特卡洛模拟显示,在这种情况下,相互作用驱动的抗铁磁绝缘子与方形晶格上纯粹的局部$π$ -Flux Hubbard模型在这种情况下根本不同。特别是,我们发现SLAC费米昂模型中的防铁磁长阶具有有限的温度连续相变,违反了Mermin-Wagner定理,并平稳地连接到了先前确定的GN-QCP。抗铁磁绝缘子内部的磁激发在没有金石模式的情况下被覆盖,即使状态自发破坏了连续的$ su(2)$对称性。这些不寻常的结果宣布谨慎对SLAC Fermion模型中量子相变的解释为与短距离相互作用的GN-QCP的解释。
Lately there are many SLAC fermion investigations on the (2+1)D Gross-Neveu criticality of a single Dirac cone [1,2]. While the SLAC fermion construction indeed gives rise to the linear energy-momentum relation for all lattice momenta at the non-interacting limit, the long-range hopping and its consequent violation of locality on the Gross-Neveu quantum critical point (GN-QCP) -- which a priori requires short-range interaction -- has not been verified. Here we show, by means of large-scale quantum Monte Carlo simulations, that the interaction-driven antiferromagnetic insulator in this case is fundamentally different from that on a purely local $π$-flux Hubbard model on the square lattice. In particular, we find the antiferromagnetic long-range order in the SLAC fermion model has a finite temperature continuous phase transition, which violates the Mermin-Wagner theorem, and smoothly connects to the previously determined GN-QCP. The magnetic excitations inside the antiferromagnetic insulator are gapped without Goldstone mode, even though the state spontaneously breaks continuous $SU(2)$ symmetry. These unusual results proclaim caution on the interpretation of the quantum phase transition in SLAC fermion model as that of GN-QCP with short-range interaction.