论文标题
混合通信网络的路由方案
Routing Schemes for Hybrid Communication Networks
论文作者
论文摘要
我们考虑$ \ Mathsf {hybrid} $分布式计算模型中计算路由方案的问题,其中节点可以访问两种根本不同的通信模式。在此问题中,节点必须计算小标签和路由表,这些标签和路由表可以有效地路由本地网络中的消息路由,这通常提供大部分吞吐量。最近的工作表明,使用$ \ mathsf {hybrid} $模型,与孤立使用任何一种通信模式相比,可以实现大幅加速。但是,如果将一般图用作输入图,则路由方案的计算仍在$ \ Mathsf {hybrid} $模型中进行多项式回合。我们通过将本地图限制为单位票据图表并确定性地解决问题$ O(| \ Mathcal H |^2 \!+\!\!\ log n)$,标签尺寸$ o(\ log n)$以及路由h的大小$ o(| \ m nher where pogcal H |^2 cd | H | $是网络中``无线电孔''的数量。我们的工作是基于Coy等人的最新工作,他们在输入图没有无线电孔的更简单的设置中获得了这一结果。我们开发了实现这一目标的新技术,包括将局部图的分解为路径凸区域,其中每个区域都包含其中任何一对节点的最短路径。
We consider the problem of computing routing schemes in the $\mathsf{HYBRID}$ model of distributed computing where nodes have access to two fundamentally different communication modes. In this problem nodes have to compute small labels and routing tables that allow for efficient routing of messages in the local network, which typically offers the majority of the throughput. Recent work has shown that using the $\mathsf{HYBRID}$ model admits a significant speed-up compared to what would be possible if either communication mode were used in isolation. Nonetheless, if general graphs are used as the input graph the computation of routing schemes still takes polynomial rounds in the $\mathsf{HYBRID}$ model. We bypass this lower bound by restricting the local graph to unit-disc-graphs and solve the problem deterministically with running time $O(|\mathcal H|^2 \!+\! \log n)$, label size $O(\log n)$, and size of routing tables $O(|\mathcal H|^2 \!\cdot\! \log n)$ where $|\mathcal H|$ is the number of ``radio holes'' in the network. Our work builds on recent work by Coy et al., who obtain this result in the much simpler setting where the input graph has no radio holes. We develop new techniques to achieve this, including a decomposition of the local graph into path-convex regions, where each region contains a shortest path for any pair of nodes in it.