论文标题
椭圆形:复杂薄膜的深度学习的光学椭圆法
EllipsoNet: Deep-learning-enabled optical ellipsometry for complex thin films
论文作者
论文摘要
光谱对于纳米科学和纳米技术,微电子,能源和先进制造的研究和开发是必不可少的。高级光谱工具通常需要专门设计的高端仪器和复杂的数据分析技术。除了常见的分析工具之外,深度学习方法非常适合解释高维和复杂的光谱数据。他们提供了很好的机会,可以用更简单的光学设置提取有关材料光学特性的微妙而深入的信息,否则这将需要复杂的仪器。在这项工作中,我们提出了一种基于常规桌面光学显微镜和称为Ellipsonet的深度学习模型的计算椭圆法方法。如果没有关于多层底物的任何先验知识,椭圆形可以从实验测量的光反射率光谱中,以高精度预测这些非平凡底物的薄膜的复杂折射率。此任务先前使用传统的反射仪或椭圆测量方法不可行。基本的物理原则,例如Kramers-Kronig关系,该模型自发地学习,而没有任何进一步的培训。这种方法可以在复杂的光子结构或光电设备中对功能材料进行功能材料的光学表征。
Optical spectroscopy is indispensable for research and development in nanoscience and nanotechnology, microelectronics, energy, and advanced manufacturing. Advanced optical spectroscopy tools often require both specifically designed high-end instrumentation and intricate data analysis techniques. Beyond the common analytical tools, deep learning methods are well suited for interpreting high-dimensional and complicated spectroscopy data. They offer great opportunities to extract subtle and deep information about optical properties of materials with simpler optical setups, which would otherwise require sophisticated instrumentation. In this work, we propose a computational ellipsometry approach based on a conventional tabletop optical microscope and a deep learning model called EllipsoNet. Without any prior knowledge about the multilayer substrates, EllipsoNet can predict the complex refractive indices of thin films on top of these nontrivial substrates from experimentally measured optical reflectance spectra with high accuracies. This task was not feasible previously with traditional reflectometry or ellipsometry methods. Fundamental physical principles, such as the Kramers-Kronig relations, are spontaneously learned by the model without any further training. This approach enables in-operando optical characterization of functional materials within complex photonic structures or optoelectronic devices.