论文标题
幻影 - RL驱动的多代理框架,用于建模复杂系统
Phantom -- A RL-driven multi-agent framework to model complex systems
论文作者
论文摘要
基于代理的建模(ABM)是一种计算方法,通过指定系统中自主决策组件或代理的行为,并允许系统动态从其交互中出现。多代理增强学习(MARL)领域的最新进展使得研究多种代理同时学习的复杂环境的平衡是可行的。但是,大多数ABM框架不是RL本地,因为它们不提供与使用MARL学习代理行为的概念和接口。在本文中,我们引入了一个新的开源框架Phantom,以弥合ABM和MARL之间的差距。 Phantom是用于基于代理的复杂多代理系统建模的RL驱动框架,包括但不限于经济系统和市场。该框架旨在提供以MARL兼容的方式简化ABM规范的工具 - 包括编码动态部分可观察性,代理效用功能,代理偏好或类型中的异质性以及对代理可以采取行动的顺序的约束(例如,Stackelberg Games或更复杂的转折环境)的约束。在本文中,我们介绍了这些功能,它们的设计基本原理,并提出了两个新的环境来利用框架。
Agent based modelling (ABM) is a computational approach to modelling complex systems by specifying the behaviour of autonomous decision-making components or agents in the system and allowing the system dynamics to emerge from their interactions. Recent advances in the field of Multi-agent reinforcement learning (MARL) have made it feasible to study the equilibrium of complex environments where multiple agents learn simultaneously. However, most ABM frameworks are not RL-native, in that they do not offer concepts and interfaces that are compatible with the use of MARL to learn agent behaviours. In this paper, we introduce a new open-source framework, Phantom, to bridge the gap between ABM and MARL. Phantom is an RL-driven framework for agent-based modelling of complex multi-agent systems including, but not limited to economic systems and markets. The framework aims to provide the tools to simplify the ABM specification in a MARL-compatible way - including features to encode dynamic partial observability, agent utility functions, heterogeneity in agent preferences or types, and constraints on the order in which agents can act (e.g. Stackelberg games, or more complex turn-taking environments). In this paper, we present these features, their design rationale and present two new environments leveraging the framework.