论文标题
马尔可夫跳跃过程的集中不平等
Concentration Inequalities for Markov Jump Processes
论文作者
论文摘要
我们得出了经验的浓度不等式,表示$ \ frac {1} {t} \ int_0^t f(x_s)ds $,其中$ x_s $是有限状态空间上的不可记述的马克夫跳跃过程,$ f $ $ f $ f $有些可观察。使用Feynman-Kac Semigroup,我们首先得出一般浓度不平等。然后,基于这种不平等,我们得出了进一步的浓度不平等。因此,我们使用三种不同的方法;扰动理论,庞加莱的不平等和信息不平等。我们还获得了伯恩斯坦型浓度不平等。
We derive concentration inequalities for empirical means $\frac{1}{t} \int_0^t f(X_s) ds$ where $X_s$ is an irreducible Markov jump process on a finite state space and $f$ some observable. Using a Feynman-Kac semigroup we first derive a general concentration inequality. Then, based on this inequality we derive further concentration inequalities. Hereby we use three different methods; perturbation theory, Poincaré inequalities and information inequalities. We also obtain a Bernstein type concentration inequality.